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Abstract

In this thesis, Machine Learning (ML) techniques were used to predict the compressive strength
of concrete in the Palestinian governorates. The datasets were collected from Palestinian
laboratories and factories from seven Palestinian governorates, which consists of five subsets, and
each sub dataset is related to a specific type of Palestinian concrete.

The thesis work is divided into three phases: In the first phase, the process is divided into two
parts, firstly; the implementation of clustering algorithms to the whole data of the Palestinian
governorates. Secondly; implementation of clustering algorithms to each sub dataset that presents
data in each governorate. The factors determining results showed that the Expectation-
Maximization (EM) algorithm is completely identical to the Kohonen Self-Organizing Maps
(KSOM) algorithm. The results from these two algorithms are similar, thus these two algorithms
were used to determine the main factors that affect the concrete compressive strength (PCCS). The
results obtained by using K-mean clustering algorithms show that they are more accurate
prediction for improving the concrete compressive strength.

The second part is the use of ML techniques to classify the compressive strength of concrete, where
three methods were used: MLPNNs, Support Vector Machine (SVM), and Ensemble Algorithm.
The accuracy results were 93.5%, 80.4% and 90.2% respectively for B200 concrete, and the
classification results for B250 concrete were 90.0%, 66.5% and 75.5% respectively. For B300
concrete, the classification results were 93.3%, 68.3% and 79.2% respectively.

The classification results were 90.6%, 83.3% and 85.6% respectively for B350 concrete, and the

classification results were 90.0%, 80.6% and 78.6% respectively for B400 concrete.



\

The results showed that the MLPNN s using Levenberg—Marquardt algorithm are the most accurate
for each type of concrete.

The classification models were applied on the dataset which was collected from Palestinian
governorates laboratories after it removes other parameters and remains only factors that affect
Palestinian Concrete Compressive Strength (PCCS) obtained from clustering algorithms. The new
dataset was implemented on the classification models like MLPNNSs, linear support vector
machine, and Ensemble algorithm show the results are close to those obtained previous
experiences that were implemented on pervious datasets and the accuracy results for the new
dataset were 92.5%, 75.4% and 88.0% respectively.

The final part depends on the use of machine learning techniques to predict the compressive
strength of concrete using three different Artificial Neural Networks (ANNs) techniques;
Multilayer Perceptron Neural Networks (MLPNNSs), Radial Basis Function Neural Networks
(RBFNNSs), and Recurrent Neural Networks (RNNs). It is found that the ANNs Techniques are
effective tools for predicting the Compressive Strength of concrete. The mean square error (MSE)
results were obtained from these ANNs models were 0.0107, 0.0064, and 0.0012 respectively

where the MLPNNSs using Levenberg—Marquardt model produce the best prediction result.
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1.1Introduction

1.1.1 Concrete Introduction (CCS)

Concrete is the most widely used material in the construction industry due to its durability and
resistance over time. Its manufacture is carried out by mixing basic components: water, cement,
fine aggregates, and coarse aggregates. But the problem is not so simple since the proportions of
these components, as well as the inclusion of additives and other factors, will determine the
resistance of this material. So, the correct choice of the dosing method directly influences this
property. The resistance of concrete depends on the pressure as a primary criterion for the success
or failure of the concrete mix design [1].

Concrete construction includes many raw materials, the most important components are fine
aggregates, coarse aggregates, cement, water, and other additives [2]. Concrete must be designed
adequately proportioned to give the properties of strength, homogeneity, uniformity,
impermeability, durability, and others. Concrete is subject to engineering standards to ensure its
quality, as the original when the building is to examine samples of concrete mixtures that provide
values about suitability and validity for the project. Because it is a designed material, it is necessary
to qualify and measure these properties to know the behavior of the concrete. The most important
property of concrete is compressive strength (CS), which is “The maximum load for a unit area
supported by a sample before failing by compression [3]. Considering that the compressive
strength is ten times its resistance to tensile strength [4], so the goal of using concrete in projects
is to take advantage of its distinctive resistance to pressure, which is determined experimentally

by testing cylindrical samples at the age of 3, 7, 28 days.



1.1.2 Concrete Compressive Strength (CCS) Introduction)

The Compressive Strength (CS) is the most important property of hardened concrete at all, it
reflects the degree of its quality and suitability. Other properties of concrete such as tensile,
bending, shearing, and cohesion with the rebar are improved and increased by increasing the
Compressive Strength and vice versa. Therefore, a Compressive Strength test is conducted to
control the quality of concrete production at the project site. This test is also used for structural
design purposes in order to determine the characteristic resistance of concrete at a pressure that is
taken as a percentage of the maximum Compressive Strength. The pressure test is also useful in
determining the validity of the aggregates and mixing water to identify the effect of impurities that
may be found in them on the Compressive Strength of concrete. Currently, the Compressive
Strength of conventional concrete ranges from 200-450 kg / cm2. As for special installations and
prefabricated units, the Compressive Strength is more than that and reaches 500 kg / cm2. The pre-
stressed concrete units should have a Compressive Strength of more than 400 kg / cmz2. It may
reach 600 kg / cmz2 [5].

When the sample is successful, it is worked on in large quantities but if it is unsuccessful, the
original is modified and re-examined and if it does not work again, it is disposed of successful
concrete is characterized by strength. Concrete is exposed to many factors that affect its strength
and suitability for the long term, and these factors are pressure, and weather factors from heat and
moisture. The quality of concrete affects its durability and its resistance to weather factors [6].
Concrete is examined several days after it has been manufactured, and it may spend 28 days to
verify its strength before proceeding to make large quantities of the same concrete mixture.
Concrete Compressive strength is examined in three stages. The initial examination begins after 3

days which should achieve a strength of 45%, the second examination begins after 7 days which



should achieve a strength of 67%, and the final examination will be 28 days after its preparation
must achieve strength that is between 90% - 100%.

The CS through the laboratory requires time to reach its maximum resistance, therefore, the results
of its tests are far from being immediate, and so, it is important to have a compression resistance
prediction model through Al methods. Nowadays, the prediction that depends on machine learning
techniques affects a wide sector in our life. The strength of concrete can be measured only in
special laboratories. The use of ML methods can predict the strength of concrete pressure by using
the concrete mixture as input data for the ML methods to predict the compressive strength of
concrete.

This study applied in the Palestinian governorates using Machine Learning, classifications are
made for the Compressive Strength of concrete in Palestinian governorates. The results showed
that the difference between concrete mixture parameters in the governorates by detecting the main
parameters that affect Compressive Strength of concrete. The study presents an application of the
Machine Learning Technique (MLT) for prediction concrete Compressive Strength, as training
and testing samples of the network were taken from the archive of laboratory experiments that
were previously. After that the results of the test samples resulting from the network were
compared with the real laboratory results on one hand and between the calculated values in a
theoretical manner on the other hand, and a match appeared. Among the results, the effectiveness
of the artificial neural networks in estimating the compressive strength of the concrete was proven
despite the complexity and incompleteness of the available samples information, meaning that the
trained network can be used by the designer of concrete mixtures to estimate the compressive
strength of the concrete and to improve it, if necessary, by adjusting the ratios of the materials

included in the mixture.



1.2 Objective

In this thesis, the main direct parameters that affect the concrete compressive strength will be
identified. It is expected that results will vary depending on the quantities that are mixed, and
clustering algorithms will be used for selecting the most important parameters that affect the CCS.
On the other hand, some machine learning techniques will be used for the prediction and
classification of the Compressive Strength of concrete using datasets collected from CCS Labs.
Various ML models such as MLPNNs, RBFNNs, SVM, RNNs, Ensemble will be used. The
process of predicting and classifying concrete compressive strength using Al techniques saves
time, cost, and effort, instead of waiting for 28 days to find out the Compressive Strength of

concrete.

The research objectives can be summarized in the following points

e Applying different clustering models to select the most important features that affect the
Compressive Strength of concrete. These techniques enable us to know the factors affecting
the Compressive Strength of concrete.

e Appling different ML techniques to classify the CCS in each type and each region by
governorates, depending on the measures are used in Palestine.

e Applying different ANNs models to estimate the Compressive Strength of concrete based
on a certain number of laboratory data that uses the largest possible number of factors
affecting the Compressive Strength of concrete which was designed and broken by the civil

testers.



1.3 Contribution

In this thesis, datasets of the Compressive Strength of concrete from Palestinian Governorates have
been collected. Different Clustering Algorithms are used and applied to select the most important
parameters that affect the CCS, such Expectation Maximization (EM), Kohonen Self-Organizing
Map (KSOM), and K- Means Clustering Algorithm (KM) were applied. Clustering algorithms
selected 4 important parameters from the 8 inputs parameters achieving an accuracy value that is
close to the accuracy produced by the 8 inputs. Also, different Al models for the classification and
prediction of CCS were applied. This is the first research that depends on Al models to predict and
classify the CCS in Palestine. Different ML models that classify the CCS in each Governorate as
MLPNNs, SVM, and Ensemble models were applied. On other hand, different models of ANNs
were used to predict the CCS including; MLPNNs with Levenberg — Marquardt (LM) learning
algorithm, RBFNNSs, and RNNs. The ANNs architecture consist of eight inputs: coarse aggregate,
fine aggregate, cement, water, w/c ratio, age, location, and super plasticizer, hidden layers with an
incremental number of neurons, and an output layer that present the CCS. Finally, in this thesis,
Al models that can predict and classify the CCS depending on the input values were presented,
which means that no need to wait for 28 days to know the real test from labs, it can be observed
that there is a strong relationship between the experimental results and those proposed by the

model.



1.4 Overview

The remainder of this thesis is arranged as the following. Chapter 2 present a background that
includes the description of the Palestinian Governorates concrete Compressive Strength dataset
for prediction and classification. It also has another dataset for detecting main factors that affect
Palestinian Governorates concrete Compressive Strength for each of Palestinian Governorates. A
literature review of the related work in concrete Compressive Strength applications, and the
techniques used to prediction and classification of the concrete Compressive Strength. In Chapter
3, has a description of the preprocessing phases which includes the feature selection and data
normalization. The clustering algorithms, EM, KSOM, and KM were explained in order to detect
the main factors that affect the Palestinian Governorate's Concrete Compressive Strength. SVM
and Ensemble classifiers have been presented to make classifications. RBFNNs, RNNs, and
MLPNNs models were explained to predict the concrete Compressive Strength in Palestinian
Governorates. Chapter 4 shows all results obtained from all models in clustering, classification,

and prediction phases. In Chapter 5, the conclusion and future work are presented.



Chapter 2

Background




2 Background

Concrete is one of the materials that form the basic building block in Palestine, and concrete
Compressive Strength is one of the factors affecting the success of construction in general and
concrete in particular. In the construction industry, checking the quality of concrete used on site
is a daily and obligatory task. To fulfill this task, different tests are carried out that allow quality
assurance by determining some properties such as resistance compression. These tests occur both
in the fresh state of the concrete and in its hardened state. It should be mentioned that the most
important property of concrete is resistant to compression since structural designs are made with
the value of this property. Therefore, the most important test is the breakage of specimens, which
measures the compressive strength [8]. The process consists of taking standardized samples
according to the ASTM standard which are test tubes of (diameter by height) 10 cm. x 20 cm. or
15 cm. x 30 cm, and it will be tested on 3, 7, and 28 days [9]. This process is long and sometimes
there is a need to know the results as soon as possible in order to take action. Therefore, according
to the international literature, attempts have been made to carry out more rapid tests. Thus, this
work seeks to predict and classify the Compressive Strength of concrete with a level of confidence

sufficient using Al models.

2.1 Datasets Description

Initially, Palestinian laboratories and concrete factories were contacted to collect the necessary
data for the study in general in the Palestinian governorates and cooperation took place between
them. The necessary data were collected from three years ago, that is, in the period from 2017 until
2020. The necessary data that were taken consists of some characteristics of concrete, and it has

been filtered in order to take only the CCS. Samples were collected from concrete laboratories and



factories in seven Palestinian governorates of Jenin, Ramallah, Tulkarm, Salfit, Hebron, Nablus,
and Tubas.

The work is divided into three parts, determination of factors affecting CCS, prediction of CCS,
and classification of CCS in each concert strength type. The datasets that were used in the process
of predicting the Compressive Strength of concrete consist of 715 samples (mixture) taken from
Palestinian laboratories with 100 samples from each governorate which consist of eight inputs:
coarse aggregate, fine aggregate, cement, water, w/c ratio, age, location, and super plasticizer.
Also, they consist of one output which is the Compressive Strength of concrete. Table 2.1 shows
the consists of the ranges of each factor influencing concrete Compressive Strength and Concrete
Compressive strength ranges.

Table 2. 1: The Palestinian concrete dataset and their valid ranges.

Feature name Range
Coarse Aggregate (CA) 780-1411 (kg/m”"3)
Fine Aggregate (FA) 420-1130 (kg/m"3)
Cement (C) 200-460 (kg/m”3)
Water (W) 109-270 (kg/m"3)
Super plasticizer (SP) 0 - 8.4 (kg/m"3)
W/c Ratio 0.4 - 0.66
Age 3, 7, 28 (days)
Location 1,2,3,4,5,6,7
Concrete Compressive Strength (CCS) 109 - 547.4 (MPa)

The datasets that were used in the classification process consisted of 200 samples (mixture) taken
from Palestinian laboratories for each type of concrete. The types of concrete are B 200, B 250, B
300, B 350, and B 400 which are consisting of seven inputs: coarse aggregate, aggregate Fine,
cement, water, water-to-cement ratio, age, and super plasticizer. It also consists of one outlet which
is the Compressive Strength of concrete and the following tables 2.2, 2.3, 2.4, 2.5, and 2.6 consists
of the ranges of each factor affecting the Compressive Strength of concrete, and the concrete

Compressive Strength ranges for each type of concrete.
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Table 2. 2: TheB200 Concrete dataset and their valid ranges.

factor name

Range

Coarse Aggregate (CA)

835 — 1375 (kg/m"3)

Fine Aggregate (FA)

525 — 1045 (kg/m"3)

Cement (C) 190 — 300 (kg/m”3)
Water (W) 120 — 180 (kg/m”"3)
Super plasticizer (SP) 0-7.4 (kg/m"3)
W/c Ratio 0.4-0.6

Age 3, 7, 28 (days)
Concrete Compressive Strength (CCS) 0,1

Table 2. 3: The B250 Concrete dataset and their valid ranges.

factor name Range
Coarse Aggregate (CA) 820 — 1327 (kg/m”"3)
Fine Aggregate (FA) 525 — 1130 (kg/m"3)
Cement (C) 250 — 275 (kg/m”3)
Water (W) 109 — 270 (kg/m”"3)
Super plasticizer (SP) 0 —5.4 (kg/m"3)
W/c Ratio 0.46 — 0.65
Age 3, 7, 28 (days)
Concrete Compressive Strength (CCS) | 0,1

Table 2. 4: The B300 Concrete dataset and their valid ranges.

factor name

Range

Coarse Aggregate (CA)

780 — 1375 (kg/m"3)

Fine Aggregate

595 — 780 (kg/m”3)

Cement 280 — 320 (kg/m"3)
Water 140 — 180 (kg/m”3)
Super plasticizer 0 — 8.4 (kg/m"3)
W/c Ratio 0.44 —0.66

Age 3, 7, 28 (days)
Concrete Compressive Strength (CCS) | 0,1

Table 2. 5: The B350 Concrete dataset and their valid ranges.

factor name

Range

Coarse Aggregate (CA)

830 — 1411 (kg/m"3)

Fine Aggregate

420 — 1030 (kg/m"3)

Cement 345 — 360 (kg/m”3)
Water 146 — 205 (kg/m”3)
Super plasticizer 0 —7 (kg/m”"3)

W/c Ratio 0.42 —0.60

Age 3, 7, 28 (days)
Concrete Compressive Strength (CCS) | 0,1
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Table 2. 6: The B400 Concrete dataset and their valid ranges.

factor name

Range

Coarse Aggregate (CA)

540 — 835 (kg/m"3)

Fine Aggregate (FA)

525 — 975 (kg/m"3)

Cement (C) 380-403 (kg/m”3)
Water (W) 150 — 204 (kg/m”3)
Superplasticizer (SP) 0—7.4 (kg/m"3)
W/c Ratio 0.4-0.51

Age 3,7, 28 (days)
Concrete Compressive Strength (CCS) | 0,1

The following table 2.7 consists of the new datasets that were created after the process
of determining the factors affecting the Compressive Strength of concrete in the
Palestinian governorates using different clustering algorithms. It was applied to the
classification process consisting of 715 samples that were entered in the prediction
process, but here it consists only of 4 influencing factors, namely: super plasticizer, wi/c
ratio, age, and location, and also consists of one output which is the Compressive
Strength of concrete and the following table consists the factors affecting the CCS, and

its ranges values.

Table 2. 7: The New Dataset Concrete dataset and their valid ranges.

Factor Name Range
Super plasticizer (SP) 0 - 8.4 (kg/m"3)
W/c Ratio 0.4 -0.66
Age 3,7,28
Location 12,3,45,6,7
Concrete Compressive Strength (CCS) 0,1

The definitions and terms of the features are the following:

1- Fine Aggregates: it contains sand, crushed stones, gravel, or any other material with similar

properties. The aggregates must be clean, hard and do not contain plankton from organic
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materials or any other impurities. All components of Fine Aggregates must pass through a
sieve with an aperture of 6.35 mm (Sieve No. 4), and it can sometimes be overlooked so
that what passes from the sieve is not less than 85% of the aggregate, and the components
of this aggregate should be of acceptable dimensions, and there are no materials in it.
Coarse Aggregates: it contains crushed stone, gravel, or any other material with similar
properties. It must be clean, free from impurities as is the case in Fine Aggregates, and the
shape of its grains is as close as possible to regular, circular without sharp corners or flat
surfaces. Granite or basalt rocks are one of the most important sources of aggregates, as
well as limestone.

Water: In the preparation of concrete, clean water is used that is free of oils, acids, alkalis,
organic materials, and other harmful impurities. Seawater must be avoided in the
preparation of the concrete mixture, and the use of pure water from a source adjacent to
granitic rocks that causes the dissolution of salts in the concrete should also be avoided.
Cement: One of the most important materials used in construction and the basic component
for the manufacture of concrete, which is a fine, soft material in the form of a gray powder
that is used as a soft binder and possesses cohesive and adhesive properties when adding
water to it.

This leads to harden and form strong building materials that resist the surrounding
environmental influences and bind the concrete components together.

Super plasticizer: A Super plasticizer is a mixed-water mixture capable of producing
significant water reduction or great flow ability without causing undue assembly delay or
air leakage in the concrete. The main goal of using the super plasticizer is to avoid particles

from separating; Super plasticizers are used to improve the quality of concrete mixtures.
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The weak properties of concrete are improved by super plasticizers. Adding these
compounds reduces the amount of water required for the concrete mix, which reduces the
water-to-cement ratio, but it does not change the ductility of the concrete. The separation
of different particles in a concrete mixture can also be avoided by adding super plasticizers.
WI/C Ratio: The ratio of water to cement is defined as the ratio of the weight of water to
the weight of the cement. The water/cement ratio according to the building codes for the
concrete mixture ranges from 0.40 to 0.60. The ratio W / C = 0.50 indicates that for every
100 kg of cement, 50 liters of water are used. As the water/cement ratio increases, the total
amount of water increases. Workability of concrete means being able to do operations such
as mixing, pouring, compacting, and easily separating (granular separation). Moreover,
portability to the ability to operate with ease. The m/ s ratio is also an important factor for
operability.

Location: The location is very important, as there are seven Palestinian governorates in this
research, and data from laboratories in each governorate was brought separately. The
governorates were, Ramallah, Jenin, Tulkarm, Salfit, Tubas, Hebron, and Nablus.

Age: Concrete is examined several days after its manufacture, and it may spend 28 days to
verify its strength before proceeding to make large quantities of the same concrete mixture.
Concrete Compressive strength after 28 days, the concrete Compressive Strength are
examined in two stages, where the initial examination begins after 3 days should achieve a
strength of 45%, the initial examination begins after 7 days should achieve a strength of
67%, and the final examination will be 28 days after its preparation, and it must achieve

strength between 90% to 100%, and sometimes it may be achieved after samples that are
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at 7 days old as a result of 90%, and then the examination of other remaining samples is
not required at 28 days old.

9- Type: In this characteristic of concrete, there are some types of concrete, and these types
are B200, B250, B300, B350, and B400, and each of them has features different from others
such as the quantity and quality of materials.

It is important to note that other factors affect concrete's Compressive Strength, such as
temperature - frost - additives ... etc., but they could not be taken into account because there were
not enough experiments to take training information.

2.2 Related Works

In recent years, many researchers have had research orientation in the use of Al in predicting and
determining the Compressive Strength of concrete and have shown their success in this field [10-

13].

2.2.1 Prediction Phase of Concrete compressive strength (CCS)

In [14], the authors developed a model that predicted the Compressive Strength at 28 days by
replacing some parts of cement material with Nano-silica and the result shows that predicate and
actual results were nearly the same. This model was trained and tested by neural network tools.
The dataset was collected from literature, the result shows that the neural network technique is an
effective tool to predicate the Compressive Strength of concrete, and this model predicates the
Compressive Strength of concrete on 28th day. In [15], the authors developed a model that
represents a neural network regression that predicates the Compressive Strength of concrete. Many
tools of freely benchmark were used in this paper and the dataset was collected by UCI machine,
and it consists of 1030 records with many of parameters of (Fine Aggregate, Coarse Aggregate,

Cement, Fly ash, Super plasticizer, Water and Water/cement ratio). The results show that the actual
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and prediction result was also the same and the error between them was nearly 1% of predication
with actual. These results show that this type of machine learning is one of the most prediction

tools in this field.

In [16], the authors developed a methodology that uses Multilayer Feed Forward Neural Networks
(MFFNNSs) to predicate twenty-eight (28) days of concrete Compressive Strength based on some
parameters. The dataset was collected by the UCI machine, and it consists of 1030 records with
many parameters. The results show high prediction accuracy, and the authors' results generate
some concrete mix proportion rules. In [17], the Compressive Strength is a major criterion in
concrete production, but the test on it is complicated and must be saved in special circumstances
and an examination should be conducted on it after 28 days in order to extract results that must be
reasonable. When the tests fail, large residues and waste of time, Researchers have developed a
method for predicting the Compressive Strength of concrete by using Back-Propagation (BP) and
this technique was tested and trained in the past by using concrete strength data. The results showed
that they can be reliable in predicting the Compressive Strength of concrete because the resulting
value in Prediction is approximately equal to the true value of the Compressive Strength of

concrete.

According to [18], the authors used Support Vector Machine (SVM) in order to predicate a
Compressive Strength of concrete, and this technique uses Artificial Neural Networks in order to
suggest a non-destructive technique and a correlation between core strengths and ultrasonic
velocities using 6 panels with a zone of strength 24-60Mpa. The results show that ANN and SVM
can be reliable in predicting the Compressive Strength of concrete more than that using traditional
linear regression. Prediction of the Compressive Strength of concrete by using three types of

ultrasonic generates small errors more than using one or two types of ultrasonic. In [19], the authors
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used two types of data mining techniques represented by Genetic Programming (GP) and Artificial
Neural Networks (ANNS) to produce a method to predicate a Compressive Strength of concrete.
The authors collected data from the laboratory which has been done in the past and the age was
28, 56, 91 days for every mixture of concrete mixes which were done under particular conditions
and standards. The results showed that the prediction results were extracted from both techniques.
Comparing results that have been extracted can be trusted by using Artificial Neural Networks
with using training function called Levenberg-Marquardt (LM) for Compressive Strength of

concrete, and this tool is reliable.

According to [20], the authors worked on Lightweight Aggregate that uses concrete with low-
density for building projects (LWAC). The model aims to use a Support Vector Machine (SVM)
in order to produce Compressive Strength prediction, Lightweight Aggregate consists of dry
density and content; the inputs were water, cement, etc. 241 samples of data collected were done
into the laboratory by experimental tests. This model was developed to predicate the Compressive
Strength of concrete by using SVM. The results show that the Compressive Strength range that the

model does not provide has an accurate result due to the different characteristics of the LWAC.

2.2.2 Main factors affecting the concrete Compressive Strength (CCS)

In [21], the authors used Data Mining for Concrete Compressive strength prediction, and the main
aim of the research was to find the main factors affecting the concrete Compressive Strength.
Researchers have used Waikato Knowledge Analysis Environment (WEKA) algorithms, and these
algorithms are specialized in the classification and clustering process that applies to the dataset,
and they used algorithms namely EM, KSOM, K-mean. The researchers made a comparison of the
results that emerged from these algorithms on which the data were applied. It was found that the

use of Data Mining is very effective and of a high level in predicting the strength of Concrete
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Compression. The results showed that algorithms (K-mean, KSOM) are effective and have high
accuracy in the process of predicting the Compressive Strength of concrete, and an algorithm (EM)

is effective in determining the main factors affecting the compressive strength of concrete.

In [22], the authors designed a model to predict the strength of concrete pressure after 28 days, and
the results showed that the Neural Networks can solve complex problems through training and
examination. This leads to the emergence of relationships between the input and output, and the
results showed that the Neural Networks in the process of predicting the strength of concrete
pressure are very accurate after 28 days. This model saved the examiner's cost and time instead of
running experiments that had been designed and failed. Using MATLAB, the data were divided
into three groups, and they were also divided into training, testing, and validation that percentages
were 70%, 15%, 15%. According to [23], the researchers designed a Neural Network based on a
back-propagation process that was trained and tested using real datasets collected from laboratories
and sources from previous studies. The authors designed a method for predicting the Compressive
Strength of concrete by using Back-Propagation (BP). This technique was tested and trained in the
past by using concrete strength data and examined dataset that was not used within the limits of
the data which had been previously trained. The results showed that the largest error was 20% and
it was also noticed that 90% of the results had an error of less than 10% which indicates that this
tool is an effective one for predicting concrete Compressive Strength. Moreover, the results
showed that the W/C factor is the largest factor that effecting in predicting concrete compressive
strength. According to [24], the authors used the waste of solid which is the most important factor
of environmental concerns in the world, and Tehran produces more than 20 million tons of
construction waste each year. It contains a large amount of Recycled Aggregate Concrete (RAC)

that can be obtained from recycled materials. The main aim of this paper was to make a model for



18

the prediction of the Compressive Strength of Recycled Aggregate Concrete (RAC) by using
Acrtificial Neural Networks. The authors divided the dataset for training and testing and the number
of mixing was 139 obtained from 14 laborites and factories. The prediction model consists of an
input layer with six factors represent fine aggregate, natural coarse aggregate, wi/c ratio, water
absorption, recycled coarse aggregate, and water-total material ratio, and the RAC Compressive
Strength was obtained in the output layer. The results show that the ANNs model is an efficient

technique to be utilized to the predicted RAC compressive strength.

According to [25], the author obtained high concrete Compressive Strength from matrix mixture.
in this paper, the authors developed a model for the prediction of the Compressive Strength of
concrete that contains different matrix mixture by statically model. The different matrix mixture
was with different ages like 1,3,7,28,56,90,180 and 365 days. The prediction model examined
matrix mixtures with eight factors represent as super plasticizer (SP), water, cement, lime,
aggregate, silica fume (SF), sand (S), and meta-kaolin (MK). The matrix mixtures affect
Compressive Strength was addressed by authors, and this led to improvements in the prediction of
the concrete strength. The results which were obtained from this model have a high correlation for
the concrete Compressive Strength of experimental results. In [26], the authors invented a data-
driven model that predicts concrete Compressive Strength at 28-day of age. In this model, the
authors used two data-driven models represented as Artificial Neural Networks (ANNs) and
Multiple Linear Regression (MLR) models aimed to predict concrete Compressive Strength at the
28-day age of different concrete mix design. Also, the input layer considered as concrete
components, and the output layer was concrete Compressive Strength. The results show that ANNs
data-driven model is an efficient technique to be utilized to the predicted concrete Compressive

Strength and MLR is not an efficient technique to be utilized to the predicted concrete Compressive
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Strength. According to [27], the authors invented the model of a Neural Network that predicates
of Compressive Strength of Light Weight Concrete (LWC) after 3, 7, 14, and 28-days of curing.
In the feed-forward Back -Propagation (BP), the prediction model, examined the Compressive
Strength of concrete (CCS) with eight factors represented as curing period, super plasticizer,
lightweight fine aggregate, lightweight coarse aggregate and, w/c ratio silica fume used in solution
and silica fume used in addition to cement. The results show that CC Neural Network is an efficient
technique to be utilized to the predicted concrete Compressive Strength compared with BP with
accuracy and speed. Also, it shows that the ANNs model is an efficient technique to be utilized in
order to predict Light Weight Concrete (LWC) Compressive Strength. According to [28], the
authors have invented an Evolutionary Artificial Neural Networks (EANNSs) model that predicts
concrete Compressive Strength (CCS), in this model, namely EANNS, the authors have used two
techniques represented as Artificial Neural Networks (ANNs) and evolutionary search algorithms,
like genetic algorithms (GA). The authors divided the dataset for training and testing and the
number of mixing was 173 with different characteristics, the prediction model examined the
Compressive Strength of concrete with seven factors represented as a large amount of sand,
cement, wi/c ratio, 3/4 sand, and 3/8 sand, coefficient of soft sand parameters and maximum size
of coarse aggregates. The number of layers, nodes, and weights in ANNs models are optimized by
using GA, the results show that optimized Neural Network is an efficient technique to be used to

predict CCS compared with MLR in accuracy, capability, and flexibility.

In [29], the authors obtained High Concrete Compressive Strength from Artificial Neural
Networks (ANNSs). In this paper, the authors developed a model for the prediction of the
Compressive Strength of concrete by ANNs technique at 28 days because this age is most often

used for quality control. The prediction model was examined against Compressive Strength with
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eight factors represented as w/c ratio, water, cement, fine and coarse aggregates. The results
showed that the ANNs model is an efficient technique to be utilized in order to predict high
Concrete Compressive strength when obtaining results with higher reliability, capability, and
flexibility than knowledge of the relationships between the parameters involved in the design.
Furthermore, the results showed an obtained correlation of the order of 0.94 by ANN technique
that predicts the Compressive Strength of concrete based on their manufacturing parameters. In
[30], the authors invented the model of a neural network that predicates the Compressive Strength
of ground granulated blast furnace slag concrete at 3, 7, 28, 90, and 360 days. The authors divided
the dataset for training and testing, the number of mixing was 45 with different characteristics like
were three different wi/c ratios (0.3, 0.4, and 0.5), three different cement types (350, 400, and
450kg/m”3), and replacement ratios with four partial slag (20%, 40%, 60%, and 80%). The
prediction model examined the Compressive Strength of ground granulated blast furnace slag
concrete with six factors represented as ground granulated blast furnace slag, cement, water, super
plasticizer, fine and coarse aggregate, and age of samples. The results showed that the ANNs model
is an efficient technique to be used in order to predict ground granulated blast furnace slag concrete

using concrete ingredients as input factors.

2.2.3 Classification phase for Concrete Compressive Strength (CCS)

In [31], the authors invented a new model to explore the capability of the Artificial Neural
Networks (ANNSs) model contains the Elastic modulus (Ec) of recycled aggregate concrete. The
authors divided the work into two parts; the first part called ANNSs-I and this part uses 324 datasets
collected from 21 international published literature and the second part called ANNs-I1 which uses
16 more datasets adding to previous datasets and these additive datasets from authors, were

randomly shared into three groups as the training, testing and validation sets, respectively. The
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results show that Artificial Neural Networks (ANNS) is an efficient technique to be utilized in
order to predict concrete Compressive Strength of Elastic modulus (Ec) of recycled aggregate
concrete. According to [32], the authors invented a new model of Artificial Neural Networks
(ANNSs) model that predicts the Compressive Strength of the concrete based on non-destructively
determined parameters. The datasets were divided into three groups; training, validation, and
testing sets, respectively, and they contain several inputs represented with concrete components
one output represented as concrete Compressive Strength ranging from 24 to 105 MP a. The results
showed that the Artificial Neural Networks (ANNSs) model is an efficient technique to be used in

order to predict concrete Compressive Strength of concrete.

In [33], the authors invented a new model form combination from technigues in order to explore
the ability of Artificial Neural Networks (ANNSs) as a first technique; the second technique is
adaptive A Neuro-Fuzzy Inference System (ANFIS), the third technique is Multivariate Adaptive
Regression Splines (MARS) and M5 Model Tree (M5Tree) technique in order to predict the
Compressive Strength of ultimate conditions of Fiber-Reinforced Polymer (FRP)-confined
concrete, by using datasets more than 1000 axial compression tests results of FRP-confined
concrete mixtures. Datasets were randomly shared into three groups as the training, testing, and
validation sets, respectively. Results showed that the combining models represented as ANN,
ANFIS, MARS, and M5Tree models are suitable with the experimental test data. Also, they show
that the proposed model represented as ANN, ANFIS, MARS, and M5Tree techniques is an
efficient model to be utilized to predict Compressive Strength of ultimate conditions of Fiber-
Reinforced Polymer (FRP)-confined concrete compared with those of the existing conventional
and evolutionary algorithm models in accuracy and estimation. According to [34], the authors have

invented a new model from a combination of techniques for exploring the ability of Artificial
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Neural Networks (ANNS) as a first technique. The second technique is Adaptive Network-based
Fuzzy Inference System (ANFIS); the third technique is parametric regression to predict the
Compressive Strength of expanded polystyrene beads (EPSs), note that EPS concrete is a type
which is very sensitive and of lightweight concrete made by partial replacement of concrete coarse
aggregates with lightweight expanded polystyrene beads (EPSs). The results showed that ANNSs
are an efficient technique to be utilized in order to predict Concrete Compressive strength. It also
shows that ANFIS elite model is an efficient technique to be utilized to predict the Compressive
Strength of this concrete, comparable with the last model is not efficient and showed a weakness

point.

According to [35], the authors used a data-driven model that predicts the Compressive Strength of
no-slump concrete at 28-day of age, No-Slump Concrete (NSC) which means that the concrete has
either very low or zero slumps. In this model, the authors used two data-driven models represented
as Artificial Neural Networks (ANNs) and Adaptive Neuro-Fuzzy Inference System (ANFIS)
models which aimed to predict Compressive Strength at 28-day age with no slump mixtures.
Datasets were divided into training and testing datasets and the input layer is considered a concrete
component. The output layer was concrete Compressive Strength. The results showed that ANNs
and AFIS data-driven models are an efficient technique to be utilized to predict the Compressive
Strength of no-slump concrete and a traditional regression model is not an efficient technique to
be utilized to predict the Compressive Strength of no-slump concrete. In [36], the authors
developed a model for the prediction of Compressive Strength of high-performance concrete using
a static model for a dataset obtained from authors, and which was with different ages like 3, 7, 14,
28, and 91 days. Multiple non-linear regression has an excellent correlation coefficient for the

prediction of the Compressive Strength of high-performance concrete at the period of days
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mentioned previously. Thus, this led to improve the prediction of the concrete strength. The results
were obtained from this model have a high correlation for the concrete Compressive Strength of
experimental results, the coefficient of correlation was 99.99% for each Compressive Strength of
high-performance concrete at each age. In [37], the author was obtained High-Performance
Concrete Compressive Strength from highly complex material and this made the behavior of
modeling a very difficult task. the authors developed a method for modeling the concrete slump
flow using Artificial Neural Networks (ANNSs) and second-order regression. The slump flow of
High-Performance Concrete (HPS) is determined by the maximum size of coarse aggregate and
water content. The result shows that the concrete slump flow model based on ANNSs is more
comparable than based on regression analysis which means that ANNs are much more accurate

than regression analysis.

In this Study, from the previous references, then the conclusion that neural networks are very
effective in the phase of classification and prediction. While determining the factors affecting the
compressive strength of Palestinian concrete has been identified for the first time in this field in
the Palestinian governorates, while there are many techniques used in the process of predicting the
compressive strength of concrete, and the results showed that some previous studies did not get

the least square error compared to the results deduced from prediction phase.

In the classification phase, there are many references that have concluded that there are some
effective techniques in all fields of engineering and science, and this is what we have reached,
while more than one technique has been used, so that we have chosen the best three by consensus

of previous studies.
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The methodology divided into three phases, in the first phase, the aim was to determine the most
important factors that affect CCS in the Palestinian governorates, the second phase was a process
of classifications for all types of concrete, and the last phase was to predict Compressive Strength
of concrete in the Palestinian governorates. Three algorithms were used for each phase and the
results show that machine learning techniques are effective in prediction and classification
processes. In the first phase, KM, EM, and KSOM algorithm were used for detecting the most
important factors that affect CCS in Palestinian governorates, these techniques were applied to
whole datasets of Palestinian governorates and applied on each dataset of each governorate of
Palestinian governorates. In the second phase, MLPNNs, SVM, and Ensemble algorithms were
used. The results show that MLPNNSs are more accurate than others in each type of concrete type.

The last phase, MLPNNs, RNNs and RBFNNs were used.



Chapter 3

Methodology
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3.1Methodology

In this thesis, different ML algorithms were used to determine the factors that affect CCS, predict
CCS and classify CCS for each type of concrete. For classification and prediction of CCS,
MATLAB software was used, while the WEKA tool was used to determine the important factors

that affect the CCS.

In the first phase, the work was divided into two parts, the first part was the implementation of
algorithms to the entire combined data of the Palestinian governorates, and the second part was
the implementation of algorithms to all Palestinian governorates separately showing the

influencing factors in the governorates as a whole and showing each governorate separately.

The second part is the use of machine learning methods for the classification process. MLPNNS,
SVM, and Ensemble Algorithm were used to classify the CCS with all types of strength. The

classification results from these models were very efficient.

In the final part of this study, different ANNs models were used to predict the Compressive
Strength; MLPNNs, RBFNNSs, and RNNs techniques produce very good prediction results with an

appropriate number of neurons.

The data collected from Palestinian factories and laboratories consists of five sets of data sets; each
data set is related to a specific type of Palestinian concrete. Three methods were used: Figure 3.1
represents the output of proposed models for prediction, classification, and detecting main factors
that affect the Compressive Strength of concrete in Palestinian governorates using different

techniques for each output.
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Figure 3. 1: Represents the architecture of the main work for all processes.

3.2 Preprocessing Phase

Data preprocessing is an important step in machine learning datasets application. Different
preprocessing steps may be used depending on the nature of the dataset [38]. Output selection and

data normalization were used in this thesis. This section will describe these steps in detail.

3.2.1 Output Selection
Many factors can be produced from the concrete mix, such as moisture, temperature. In this work,

the concentration is on the Compressive Strength of concrete

3.2.2 Data Normalization
Normalizing data is an important preprocessing step in machine learning technique to deny one

feature and to dominate the other features; normalization aims to make data points of all features
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have the same scale to have the same importance. Min-Max normalization is one of many data

normalization methods [38]. In this research, this type is used.

1. Min-Max Normalization: it performs a linear transformation on the data and scales the
attribute to a fixed range. In this work, the range between [0,1] is used, Min-Max

normalization is calculated using the following equation:

X — Xmin

y=——— 3.1
Xmax — Xmin

Where y is the normalized value obtained from this equation, x is the original value of the feature,

Xmin IS representing as the minimum value of the feature, and Xmax is represented as the maximum

value of the feature.

3.3Building Models Phase

In the beginning, the collected data were analyzed and classified according to the data
and the main governorates in Palestine, then three clustering algorithms as EM, KM,
and KSOM, were used based on clustering algorithms. The main parameters affecting
the compressive strength of the concrete will be determined, and then the results based
on the output and determine the appropriate algorithm will be compared to determine
the main factors. The number of clusters was determined and accordingly and the
results will be recorded in a specific table so that each governorate will have different
results from the others based on the information inferred through them and the
principle of these algorithms depends on the standard deviation of all the clusters that
available. So, the original standard deviation of each governorate will be compared
with a standard deviation of the results from the clusters that available, and then it will

be decided whether the influencing factor is of great influence or importance and it will
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be recorded based on our readings. The results show that each governorate has different
influencing factors from the others because there is a difference in the quantities and

systems in Palestine.

In the second step, classifications of concrete Compressive Strength were made in the
Palestinian governorates for each type of concrete. This process was carried out using
three algorithms which are MLPNNs, SVM, and Ensemble. Each one gives accurate
results. In the third step, classifications of the most important factors affecting the
Concrete Compressive Strength (CCS) in the Palestinian governorates were made
resulted from the use of the clustering process, which are 4 input. The algorithms that
were used in the previous classifications process were applied, and the results showed

that the accuracy is close between the two phases.

In the last stage, a prediction for concrete Compressive Strength (CCS) in the
Palestinian governorates was made using eight factors as input and only one output,
which is the concrete pressure strength in the Palestinian governorates. The dataset
consisted of 715 samples using three algorithms which are MLPNNs, RBFNNs, and

RNNSs.

3.3.1 K-Means Clustering Algorithm (KM)

Clustering is perhaps the most widely recognized exploratory data analysis strategy
used to get an instinct about the construction of the data. It is very well and may be
characterized as the errand of recognizing subgroups in the data with the end goal that
information focuses in a similar subgroup (cluster) which is very much like while data

focuses in various groups that are different. In general, it is attempted to discover
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homogeneous subgroups inside the data with the end goal that data focuses in each
cluster are as comparative as conceivable as per a comparability measure. For
example, Euclidean-based distance or connection-based distance. The choice of which
likeness measure to utilize is application-specific [39].

Clustering analysis should be possible based on highlights where we attempt to
discover subgroups of tests dependent on highlights or based on examples. We'll
cover here clustering dependent on highlights. Clustering is utilized in the market
division; where we attempt to discover clients that are like each other whether as far
as behaviors or attributes, where we attempt to amass comparative districts, record
grouping dependent on themes, and so on [40]. Clustering is viewed as an
unsupervised learning technique since we don't have the ground truth to look at the
yield of the grouping calculation to the true labels to assess its presentation. We just
need to attempt to research the design of the information by gathering the information
focuses into unmistakable subgroups, while KM is one of example that used clustering
and it is the most used clustering algorithm. KM is an iterative algorithm that attempts
to parcel the dataset into Kpre-characterized particular non-covering subgroups
(clusters) where every data point has a place with just one gathering. It attempts to
make the intra-group data focuses as comparative as could be expected under the
circumstances while likewise keeping the clusters as various (far) as could reasonably
be expected. It allocates points of data focuses to a group with the end goal that the
amount of the squared distance between the points of data focuses and the cluster’s
centroid is at the minimum [41]. The less variety available inside clusters, the more

homogeneous (similar) points of data focuses are inside a similar cluster.
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K-means Clustering Algorithm Work Steps:

1. Determining the number of clusters K.
2. Initializing centroids by first rearranging the dataset and afterward randomly
choosing K point of data focuses for the centroids without replacement.
3. Continuing to emphasize until there is no change to the -centroids.i.e the
assignment of data points to clusters isn’t changing.

e Computing the sum of the squared distance between all centroids and points of

data using the following equation (3.2):

) =3 3 (v 32

i=1 j=1
Where ”Xi_vi” is the Euclidean distance between the pointX; and a centroidV;,

iterated overall k points in the i;, cluster, for all n clusters. C; is the number of data
points in i;, cluster, C is the number of cluster centers.

e Appropriating each data point to the nearest cluster (centroid), where, GC;

represents the number of data points in i;, cluster using this following equation
(3.3):

v, =(1/6)> % 33
i1

e Taking the average of all data points that belong to each cluster and then
compute the centroids for the clusters.
KM solved Expectation-Maximization Problem. The E-step appropriate the points of

data to the nearest cluster. The M-step calculates the centroid of each cluster [42].

3.3.2 Kohonen Self-Organizing Map (KSOM)

Kohonen Self-Organizing Map (KSOM) is one of the most popular unsupervised
learning techniques [43]. Invented by Teuvo Kohonen in 1982, and this algorithm

performs vector quantization depending on similarities of patterns. It is a neural
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network-based cleavage clustering approach as it maps genes into a series of sections
in the neuron layer resulting in the similarity of their expression vectors to the
reference vectors or weights specified for each section.

KSOM clustering result might be influenced by a few parameters like learning
parameters and topology map sizes, therefore, the dataset is frequently trained with
different map sizes [44]. To find the most suitable map size that can accurately
represent a clustering of the datasets, this algorithm is also able to process high-
dimensional datasets because it is implemented to group data into clusters that show
some similarities. Each cluster with similar features is displayed on the same node on
the map. Otherwise, the difference is increased with the distance separating the two
objects on the map, therefore, the space of the cluster is determined on the map so that
the object enables the visualization and simultaneous observation of the cluster [45].
KSOM has many steps to group data that have similar features into clusters. This
algorithm begins with measuring the distance between cluster centers or cluster nodes
in the topographic map by using Euclidean Distance [46]. The Euclidean Distance is
used to calculate the distance in the plane using equation (3.4) [47], [48] and these

steps are:

Let Input: = {x1, x2, x3...xn}, W; be the weight vector associated with unit positioned between
iand j.

1- All nodes weights must be initialized.

2- A vector is chosen at random from the set of training data and presented into a
grid.

3- The distance between all inputs and output nodes is calculated using Euclidean

Distance using the following equation (3.4):
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N
d(, j)= Z(Wi'_xi)z 3.4
j=1
4-  The winning unit is selected by the minimumd(i, j).
dij  Is the distance between weight vector W; and given patternx;.

5- Calculate all weights for neighbor nodes using Gaussian Function.
6- Nodes weight is adjusted to make it more likely the input vector by Each

neighboring using this equation (3.5):

[rc— rk||2
Wiy = Wij(t) +a(( S )= Wij ® ) 3.5

Where a is the learning rate, ||rc — rk||?define the distance between neuron’s 2D matrix
positions (VYN x YN matrix), delta are monotonically decreasing functions of time-
varying.

7- The learning rate must be updated at a certain time.

8- Repeat Step 2 for N iterations.

3.3.3 Expectation-Maximization (EM)

The expectation-maximization (EM) algorithm utilizes when some of the data missing
is used to obtain maximum probability estimates for parameters. Although this
algorithm can also be used when there is hidden data, that is, unclear data which was
never supposed to be monitored in the first place, It can be done in this case. It is
simply assumed that the hidden data is lost and going ahead and applying the EM
algorithm. This algorithm is very unique in statistics and mathematics, it is used
extensively in machine learning, Al applications, data elicitation, and Bayesian
statistics where they are used in background marginal distributions of parameters [49].

Assuming that the complete data-set consists of z=(x,y), but that only X is observed.
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The complete-data log-likelihood is then denoted by 1(&;x,y)where 6 is the unknown

parameter vector.

Expectation Step (E-Step): EM algorithm in E- Step calculates the expected value of

1(@;x,y) given the observed data,X the current parameter estimates, 90|d say. In

particular, by using the following equation (3.6):
Q(6:6,4) =ENNE@ X V)% Gs5] = [1(6: %, y) p(y| X, 6,14 )dly 3.6

Where p(ylx, 190|d)is the conditional density of Y given the observed data, X, and assuming
0=06,
M-Step: The M-step consists of maximizing over ¢ the expectation calculated in

(3.7). That is, we set
O, = max Q(6:6,,) 3.7

We then set 6, =0,

These steps are persistent as necessary until the sequence of 6Gnew’s converges. In fact,
under very general conditions convergence can be guaranteed with a local maximum,
and why this is explained below. If there is a suspicion that the log-likelihood function

has multiple local maximums, the EM algorithm should be running multiple times,

using a different starting value 6, 0n each occasion. The ML estimate of 6 is then

taken to be the best of the set of local maximums obtained from the various operations

of the EM algorithm.

\ Algorithms for Clustering: K Mean, KSOM, and EM.

Input: Train dataset, Test Dataset, the dataset for CCS from each Palestine governorates;
Output: detect main factors that affect CCS in Palestine governorates result;
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Data Preprocessing Phase:
Stepl: choosing the number of clusters
Step2: initializing centroid for each cluster
K Mean Algorithms Training Phase:
Get number of clusters
Get Train dataset
K Mean Testing Phase:
Get parameters from the training phase
Get Test dataset
Calculate final cluster centroids result for each factor
Output final cluster centroids result
Determine the cluster that has the maximum CCS value.
Choose this cluster.
Check final cluster centroids for each factor.
if final cluster centroids for any factor is greater than FULL data.
Choose this factor.
Save network parameters.
KSOM Algorithms Training Phase:
Get number of clusters
Get Train dataset
KSOM Testing Phase:
Get parameters from the training phase
Get Test dataset
Calculate standard deviation result for each factor
Output standard deviation result
Determine the cluster that has the maximum CCS value.
Choose this cluster.
Check standard deviation for each factor.
if the standard deviation for any factor is nearly equal to 0
Choose this factor.
Save network parameters.
EM Algorithms Training Phase:
Get number of clusters
Get Train dataset
EM Testing Phase:
Get parameters from the training phase
Get Test dataset
Calculate standard deviation result for each factor
Output standard deviation result
Determine the cluster that has the maximum CCS value.
Choose this cluster.
Check standard deviation for each factor.
if the standard deviation for any factor is nearly equal to 0
Choose this factor.
Save network parameters.
Main factor detection Results:
Get optimal parameters that affect CCS in Palestine for each cluster from these algorithms.
Get the common factors among the results obtained from these algorithms for each number of clusters.
Output Main factor results.
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3.3.4 Multi-Layer Perceptron Neural Networks (MLPNNs)

Artificial Neural Network technology is a simulation of the work of the biological Neural

Networks in the human brain [50]. It has been successfully used on multiple models and with

many applications in industry, medicine, financial forecasting, and civil engineering [51]. It has

been used to estimate the cost and productivity of water projects. It must be noted that Artificial

Neural Networks is not a program but rather it teaches [52]. Neural Networks, as shown in Figure

(3.2), consists of simple processing units called neurons with many connections between them

distributed in several layers [53].

Basic principles of MLPNNs were explained in [54]:

1-

Input Layer: it contains several neurons equal to the number of factors
studied, and they do not perform any processing process, so it is where the
network feeds the data and it is the one that transmits the information to the
hidden layer.

Output Layer: It contains several neurons equal to the number of values that
will be obtained or specified.

Hidden Layer: it is the one that feeds the output layer and is present between
the first and last layers. Try and error until you get an optimized network.

It is distinguished between two types of Artificial Neural Networks according
to the number of hidden layers within them:

1- Single-layer Artificial Neural Networks: which consists of the input layer
and the output layer only.

2- Multilayer Neural Networks: which are composed of the input layer, output

layer, and one or more hidden layers.
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input layer hidden layer 1 hidden layer 2 output layer

Figure 3. 2: General model of multilayer Artificial Neural Networks.

These factors that have been entered into the input layer are processed internally in the
network and modified by multiplying them with numbers called the weights that the
network changes during training [55], then they are transferred and processed again
through the hidden layers to be transferred to an acceptable output layer using a
similar output. MLPNNs have two phases: forward and backward propagation. In the
forward phase, the output is predicted, the error is calculated and sent back to the
backward prorogation phase. During the backward propagation, the calculated error is
propagated back through the network to adjust the weights and reduce the error in the
output layer.

The training process of the MLPNNSs is mapping the input to the corresponding output. It begins
with providing input and initial weights to the MLPNNSs then adjusting the weights to minimize
the error between the desired and actual output of the network. The output of the MLPNNSs is the

weighted sums of the inputs which calculated using the following equation 3.8:

Yij = wij.x; 3.8
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Where w;;: is the connection weight between the ith node in the input layer and the jth node in
the hidden layer, and x;: is the ith input. To stop the training process, there is a certain threshold
0 is set depends on the error of the MLPNN [56] which represents the difference between the

desired and actual output. The error is calculated using the following equation 3.9:
n
1
MSE = EZ(yd — )2 3.9
i

yq 1S a predictive output and y; is the actual output. The training process continues to tune the
weights and minimize the error to be small enough regarding 0. The weights updated using the
following equation 3.10:
Aw;, 1 = a.E.x; 3.10
MLPNNs with feed-forward back-propagation algorithm consists of three layers represented by
feed forward, multi-input multi-output as follows:
e Inputlayer X i=1, 2, ..., n. Where n is the number of input nodes.
e Hidden layer j: Each node is a neuron, each neuron connected to the input layer by the
processing unit called weights wij, where i is the input node and j is the hidden layer node.
e Output layer k: Contains the nodes that produce the output of the network represented by
several neurons depends on several outputs, Yk.
When the training phase fed to the input layer, the sum of weights from input to the j*" node in
the hidden layer is given by:
y =X WX+ 6 3.11
0;: called the bias node that always has a value of 1, calculate the gradients efficiently done by
back propagation algorithm when using MLPNNSs. The back-propagation algorithm always starts

from the last layer (output layer) and propagates backward to update the weights of the network,
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it needs an activation function, typically used the sigmoid function. The actual output of the j®"

node is:

V=X, =— 3.12

T 1+eY

In the output layer, the difference value between the actual and the target value is A, where the
actual value of the node k is Ykand the target value is tk, while X s the input to the next layer’
node.

A=t — Yy 3.13
dk: The error signal of the output layer is calculated by Ax and the derivative of the sigmoid
function.

S = MY, (1— 1) 3.14

The change in the weight between node j and node k is done by multiplying the error at node k
by the output of node j by using the delta rule.

Awjp = 18Xy 3.15
wjk: The weight between node j and k, where [ is the learning rate, so, to update it by the following
formula:

Wik = Wi + Awjy 3.16
To calculate, the error signal §;for node j in the hidden layer, &;: The error signal for node j in the
hidden layer is calculated by the following formula:

8§ = (tx — Y)Y I Wi 8k 3.17
wijj is the weights between the input node i and the node j can be updated by using 14 and 15 so
Aw;; = 1 §;X; 3.18
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The back-propagation algorithm repeats until the error on the output node is minimized.

3.3.5 Support Vector Machine (SVM)

The main aim of the Support vector machine technique is to search a hyper-plane in an
N-dimensional space (where N is the number of features that classified the points of
data). To separate the two categories of data points, several possible hyper-planes can
be chosen. The main aim is to search for a plane that has the maximum distance
between data points of both classes and maximizing the margin distance leads to

provide some reinforcement so that future points of data can be categorized with more

trust.
b
X, 4 O % A \ o)
| O O .
7
D D Maximum.
D I:I \\/margiﬂ
D 5 S x1;

X4

Figure 3.3: SVM Algorithm.
In the support vector machine, the look is to maximize the margin between hyper-plane
and point of data, the function that helps maximize the margin is discontinue loss
called loss function c(x,y,f(x)) given by training data (xi, yi) for i = 1 ..N, with xi €
Rd and yi € {1, 1}, learn a classifier f(x).

ifyxfx)=1

0o,
Crf =1y f0o, if yo £l <1 320
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ey, f() = A -y fx). 321

The cost equals zero. If the actual value and the predicted value are of the same sign, if the two
values are not equal to zero, then it calculates the loss value by the cost function. When it adds a
parameter called regularization parameters to the cost function, it looks as below, the
regularization parameter aims to balance the margin maximization and loss by using (3.22), where

Xi is the input, w is the weight and A is regularization parameters:

miny, Alwll* + 2 (1= i (i, wh) 3.22
By using the loss function, it takes partial derivatives concerning the weights of the
data points to find the gradients dthat able to update the weights represented by (3.23).

)
<~ Allwll? = 22w,
6Wk

2 a- yilxi, W)y = {O ' if yilx,w) 2 1

3.23
Swie —yixi, if yilx,w) <1

No misclassification is in our method when correctly predicts the class of data points, it
has one solution that is represented in (3.24) by updating the gradients from the

regularization parameter.
w=w—a. (2\w) 3.24

When our method makes an error when predicting the class of data points, this is called
misclassification, it has one solution that is represented in (3.25) by updating the

gradients including the loss along with the regularization parameter.



42

w=w+a (y.x; —2\w) 3.25
3.3.6 Ensemble Algorithm (ES)

Ensemble algorithms are methods that lead to improving results accuracy by using multiple
models combined instead of using a single model. The results accuracy increasing significantly
when combing models, which is using in machine learning. Ensemble methods have two
categories that are: called parallel ensemble techniques and sequential ensemble techniques. The
sequential techniques have a base learner in a sequence. The dependence between the base
learners is promoting by the sequential generation of base learners, assigning higher weights to
previously misrepresented learners improved the performance of the models. The other type of
ensemble algorithms is called parallel ensemble techniques that the base learners are working in
a parallel format like the random forest, it used this method to encourage independence between
base learners, the base learner’s independence reduces significantly by the mistakes in the
application of averages. Some ensemble algorithms methods apply in base learning with a single
algorithm only this leads to make a result in all base learners as a homogeneity, but
inhomogeneous with similar quality, the base learner back to base learners of the same type, but
in distinct types the base learner is heterogeneous. Ensemble algorithms using multiple models
combined instead of using a single model and these models are:

Bagging Ensemble Algorithm: The idea is simply to collect several different expectations
about our data and find the best results after collecting it. The following image simply illustrates

the idea.



43

Barrdanukest | Fubrekas dabisd 2 | aaw | Fasakirs miniel n |

TEEE 1 I_ TREE 2 —| TREEm —|
J— . 1 I
- rI‘ = j ™ rrt
| [ ]
(- ’ () ) ) |
o FAeoulis Aggre gak +
Eni Iﬂdlﬂﬂﬂ:- i

Figure 3. 4: Bagging Ensemble architecture.
Boosting Ensemble Algorithm: In the same way as before, but in it, the wrong results are
taken and retrained until arrived at a suitable model.
Random Forests Ensemble Algorithm: This algorithm works with the same idea as the
decision tree algorithm, and its operation will be as follows:
1- It takes several features and creates a decision tree out of it.
2- The same process is repeated with different variables (a variable can be repeated in more
than one tree).
3- After completion, the test is done, the test is done on each tree, which is created in the
first two steps and its results are shown.

4- And from those results, the best is chosen.

\ Algorithms for classifications: MLPNNS, SVM, and Ensemble.

Input: Train dataset, Test Dataset, the optimal value for CCS of concrete type;
Output: Train and test accuracy result;
Data Preprocessing Phase:

Stepl: Normalize the dataset samples 0 or 1
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for subset in dataset do
for an item in subset do
if age =3
if CCS>= CCS (28 day *0.45)
CCs=1
Else
CCSs=0
if age =7
if CCS>= CCS (28 day *0.67)
CCs=1
Else
CCSs=0
if age =28
if CCS>= optimal value for CCS of concrete type
CCs=1
Else
CCS=0
MLPNNs Training Phase:
Get optimal Parameters
Get Train dataset
While  MSE less than the threshold
While Termination condition not satisfied
Calculate classification result
Calculate MSE
Update weights
Number of neurons= Number of neurons+2
Output MSE
Output classification result
Save network parameters
MLPNNSs Testing Phase:
Get network parameters from the training phase
Get Test dataset
Calculate test classifications result
Output MSE
Output test classification result
SVM Training Phase:
Get optimal Parameters
Get Train dataset
While MSE less than the threshold
While Termination condition not satisfied
Calculate classification result
Calculate MSE
Update weights
Number of neurons= Number of neurons+2
Output MSE
Output classification result
Save network parameters
SVM Testing Phase:
Get network parameters from the training phase
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Get Test dataset
Calculate test classification result
Output MSE
Output test prediction result
Ensemble Training Phase:
Get optimal Parameters
Get Train dataset
While  MSE less than the threshold
While Termination condition not satisfied
Calculate classification result
Calculate MSE
Update weights
Number of neurons= Number of neurons+2
Output MSE
Output classification result
Save network parameters
Ensemble Testing Phase:
Get network parameters from the training phase
Get Test dataset
Calculate test classification result
Output MSE
Output test classification result.
Comparison Test Results:
Get the optimal number of neurons that have maximum accuracy from MLPNNs.
Get Accuracy results for each algorithm.
While any algorithm has maximum accuracy.
Output accuracy results.
Choose this algorithm.
Main factor Test Results:
Get the optimal number of neurons that have maximum accuracy.
Get optimal parameters that affect CCS in Palestine.
Get Accuracy results from this algorithm.
If classification accuracy nearly equal main affect classification accuracy.
Output accuracy results.
Choose this algorithm.

3.3.7 Radial Basis Function Neural Networks (RBFNNSs)

RBF Neural Networks are also a type of feed-forward neural network trained using a supervised
training algorithm. The main point of this type has only one hidden layer, it uses an activation
function called radial basis function, and this function is very strong in approximation and
calculation., These types of Neural Networks are implemented in different problems and

successful implementation could be achieved by a lot of researchers, the RBF network algorithms
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trains much faster than back-propagation networks. The general equation for the output of
RBFNNSs network [57] can be represented as follows) by using the Gaussian function as the basis

function.

=([lx=cilh?

202 ) 3.26

y(x) = XM, wie

These parameters X, y(X),Ci,G M represent input, output, center, width, and several basis

functions centered at ci, Similarly, W, represents weights. Denoting this algorithm, it can show

the basic architecture of RBFNN (Fig 3.5) by constructed an RBFNNs by taking the Gaussian
function as the basis function and considering randomized centers and width. The data transform
from input neurons to hidden neurons that have a radial basis function as an activation function

calculate the distance between the input layer and hidden layer centers by this function.

Figure 3. 5: Architecture of RBFNNs

The output summation of hidden layers with some weight of these neurons in the hidden layer is
provided as the output layer and value of Radial Basis Function Neural Networks (RBFNNSs).

The detection of neurons number in the hidden layer is one of the most problematic tasks because
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under-fitting and over-fitting problems may occur due to neuron numbers in the hidden layer.
The under-fitting problem means that the network is not able to proper pattern recognition. On
the other hand, another problem called the over-fitting problem means that the network leads to
poor generalization. Eq. (3.27) gives the formula for radial basis functions by using Gaussian

basis functions.

<l

H (x)=e « 3.27

Gaussian Function:

Radial Basis Function Neural Networks (RBFNN) can be trained in several ways, the gradient
distance approach is the most important method for training and describing Back-Prorogation
(BP) algorithm, but the speed of the training in RBFNN is very high as compared to Multilayer

Perceptron Neural Network (MLPNN) with back-propagation.

3.3.8 Recurrent Neural Networks (RNNs)

A recurrent neural networks (RNNSs) is a type of Artificial Neural Networks (ANNS) that uses
time-series data or sequential data. RNNs use training data for learning, Recurrent Neural
Networks (RNNs) output based on the prior parameters in order, while other deep learning neural
networks assume that outputs and inputs are not dependable and share parameters across each
layer of the network is a feature from recurrent networks features, Recurrent Neural Networks
share the same weight elements within each layer of the network, while feed forward networks
have different weights across each node. These weights are still adjusted through the processes

of back propagation and gradient descent to facilitate reinforcement learning [58].
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Figure 3. 6: Recurrent Layer Algorithm.

Order is defined as a table of (Xi ) yi) pairs, these parameters represent the following sequence:

X; is the input at a timei, while Y;is the Desired output. In the dataset, each time step has
additional input: the previous time step in the hidden state hi_l, knowing that at the time ithe
Recurrent Network has; vector of input is X; , while vector of output is), and ;i is the vector of

predicted output and hidden layer is hi . The Recurrent Network being a simple one-hidden-layer
feed-forward network at a single time step, knowing that at the time i the Recurrent Network

has; the vector of input is X; , while vector of output is }. and y is the vector of predicted
output and hidden layer is hi . Therefore, it has three types of spate matrices of weights: Input-

to-hidden weights W,, , Hidden-to-hidden weights W, , Hidden-to-output weights W, .the

forward propagation equations( 3.28, 3.29)for this network are:

h=cW,h ,+W, X +b) 3.28

n

Yi :Wyhhi 3.29
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\ Algorithm for Prediction: MLPNNS, RNNs, and RBF

Input: Train dataset, Test Dataset, Levenberg-Marquardt algorithm;
Output: Train and test result;
Data Preprocessing Phase:
Stepl: Normalize the dataset samples between 0 and 1
for subset in dataset do

for an item in subset do
subset[item] — min(subset)

max(subset) — min(subset)

subset[item] «

MLPNNSs Training Phase:
Get optimal Parameters
Get Train dataset
While  MSE less than the threshold
While Termination condition not satisfied
Calculate prediction result
Calculate MSE
Update weights
Number of neurons= Number of neurons+2
Output MSE
Output prediction result
Save network parameters
MLPNNs Testing Phase:
Get network parameters from the training phase
Get Test dataset
Calculate test prediction result
Output MSE
Output test prediction result
RBFNNs Training Phase:
Get optimal Parameters
Get Train dataset
While  MSE less than the threshold
While Termination condition not satisfied
Calculate prediction result
Calculate MSE
Update weights
Number of neurons= Number of neurons+2
Output MSE
Output prediction result
Save network parameters
RBFNNs Testing Phase:
Get network parameters from the training phase
Get Test dataset
Calculate test prediction result
Output MSE
Output test prediction result
RNNs Training Phase:
Get optimal Parameters
Get Train dataset
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While  MSE less than the threshold
While Termination condition not satisfied
Calculate prediction result
Calculate MSE
Update weights
Number of neurons= Number of neurons+2
Output MSE
Output prediction result
Save network parameters
RNNs Testing Phase:
Get network parameters from the training phase
Get Test dataset
Calculate test prediction result
Output MSE
Output test prediction result.
Comparison MSE Results:
Get the optimal number of neurons has minimum MSE.
Get MSE for each algorithm.
While the MSE of each algorithm has the lowest MES.
Output MSE.
Choose this algorithm.

3.3.9 Levenberg Marquardt

The Levenberg-Marquardt (LM) algorithm [59] is one of the most efficient training algorithms,
it is an iterative technique that solves the problems existing in both the Gauss-Newton method
for neural-networks training and gradient descent method done by the combination of those two
algorithms, and can be thought of as a combination of steepest descent and the Gauss-Newton
method [60]. LM algorithm has its flaws, it has many problems, one of these problems is the
Hessian matrix inversion, the HM needs to be calculated each time to update the weights, and
may have several updates is each time. For networks that have a small size, the computation is
efficient, otherwise for the large size is not efficient, like image processing problems, this
calculation of inversion is going to be damaged and the speed gained by second-order

approximation may be wasted, in this case, LM maybe even slower than the steepest descent
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algorithm. Jacobian matrix is another problem that has to be saved for computation, and its size
ISP x M x N, where: P: is the number of patterns, M: is the number of outputs, N: is the number
of weights.
When training patterns have a large size, the cost of memory may be too much to be practical for
Jacobian matrix, also the LM algorithm was implemented for multilayer perceptron neural
networks (MLPNNSs) and Recurrent Neural Networks (RNNs). When making a combination
between the Gauss-Newton algorithm and the steepest descent algorithm, during the training
process, the LM algorithm switches between the two algorithms. Gauss-Newton algorithm is used
when the combination coefficient p is very small, Equation 3.30 is approaching Equation 3.31.
Steepest descent algorithm is used when the combination coefficient p is very large, Equation
3.30 approximates to Equation 3.32. When the combination coefficient p in Equation 3.30 is very
big, it can be interpreted as the learning coefficient in the steepest descent method (3.32):

Wik = Wi — (i + uD) ™Y ey 3.30

Wicer = Wi — JiJi) " T kex 331
Where J is the Jacobian matrix and e is the error vector, I is the identity matrix and p is always
positive, called combination coefficient.

Wis1 = Wi — QGx 3.32

9ExW) s the first-order derivative of total error.

Where « is learning rate, while g =

3.3.10Matlab Software
In this research, Matlab software has been used which has features that enable to make
predictions and classifications using many algorithms available in this software, and

also in recent versions of this software. The designers have added new tools that
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enable them to complete the work and application easily and extract results beautifully
and terribly. This software is easy to deal with in terms of design, arrangement,
entering the necessary data, extracting the necessary data, and showing the results.
Many algorithms have been used in classification and prediction, and it has shown
effective results and has been relied upon in building the system completely and
extracting the important data necessary for classification or prediction. In the
beginning, it experiments with important tools in the prediction process, we sed many
tools were used like MLPNNs, RBFNNs, and RNNs. One of the three most important
tools was devised for the prediction process. A comparison between the three tools
and these tools has been made showing intense competition and showing close results,

but the tool that got the least error was taken.
3.3.11 Weka Software

As for the Weka tool, WEKA is an open-source software package that contains a set
of algorithms that aid in data mining. These algorithms can be easily applied to a set
of data either directly through the WEKA program interface, or by invoking them
(Java code) wusing their classes. By downloading the library of WEKA, WEKA
software has been used, this software is very important and it is very easy to deal with
so that a classification process can be made based on many algorithms. Three
algorithms have been made and compared the results so that the results were shown
with knowledge of the factors affecting the compressive strength of concrete (CCS) in
the Palestinian governorates by making a comparison between results that were
obtained from K-Mean, KSOM, and EM Algorithms. The first step in analyzing using

WEKA is to use data with a format that can be understood by WEKA. One of these
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formulas is a formula. ARFF. The word “ARFF” stands for Attribute-Relation File
Format. It is one of the file formats. WEKA deals with data analysis. It could be said

that a file (ARFF) is like a table containing a set of data represented by several

columns and rows. The columns represent attributes or attributes while the rows
represent instances or models. One model consists of several characteristics.
3.4 Classification Metrics Selection
There are many parameters linked with technique “pattern recognition and classification” and
mathematically measure its performance [60]. This research will focus on the following mercies:
Accuracy, Sensitivity, Specificity, Confusion Matrix, True positive (TP), False positive (FP), False
negative (FN), and True negative (TN). In the following paragraphs, the definitions of these terms

according to the prediction of the problem are:

TP: The number of samples correctly classified as Actual.
FP: The number of samples incorrectly classified as Actual.
TN: The number of samples correctly classified as Predicted.

FN: The number of samples incorrectly classified as Predicted.

Confusion matrix: is a table that is used to show the results of the classification model. The table
consists of two-dimensional, each column represents the actual values, and each row represents the
predicted values. It is used to calculate most of the performance measures. The following table

describes the confusion matrix for prediction models to diagnose the problem.

Table 3. 1: Confusion matrix description for Compressive strength of concrete.

Predicted Classes

Actual value Predicted value Total value
Actual value TP FpP TP+EP
ER
S & | Predicted value | FN TN FN+TN
< ©
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Total value TP+FN FP+TN TP+FP+FN+TN

Accuracy: The main metric that utilized to calculate the performance in pattern recognition and

classification model, which represented by this equation:

| ~ TP + TN 2 33
CeUracY = TP Y FP+ FN + TN '

Sensitivity: The percentage of records that classified correctly as Actual to all records that

classified as Actual as represented by the following formula.

It is the percentage of records that are predicted to a certain class correctly to all records predicted
in that class. It is calculated using the following equation:

TP
= — 3.34
Recall TP T FN

Specificity: The percentage of records correctly predicted as Predicted to all records predicted in
the Predicted class.

TN
Specificity = TN T FP 3.35

Precision: The percentage of records correctly predicted as actual to all records predicted in
Actual class.

TP
Precision = ————— 3. 36
recision = o5 TP

ROC curves [60] is short of Receiver-Operating Characteristic Analysis and this
represented as logistic regression which is utilized for detecting the best values of the
cutoff for predicting which has a new observation like O called failure and 1 called a
success, and this is used for showing the classification model performance at different

probability thresholds. The ROC curve will be more flexible when predicting the class
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label’s probability instead of the class labels itself. By using class label’s probabilities,
it can calibrate thresholds values, by default in logistic regression, the wvalue 0.5 is
represented as a probability threshold, and any values between this range [0.0 — 0.49] is
represented as a negative label and any values between this range [0.5-1.0] are
represented as a positive label. It could be optimized this probability threshold and may
have better results. This graph is represented by plotting False Positive Rate (FPR)
plotted on the x-axis versus True Positive Rate (TPR) plotted on the y-axis for different
values between [0.0-1.0] and these values called probability threshold values, while
TPR is the ratio of correctly predicted positive labels from all the positive labels and
FPR is the ratio of incorrectly predicted positive labels from all the negative labels.
(AUC) is a short area under curve, It calculates the entire two-dimensional area
underneath the entire ROC curve from [(0, 0) — (1, 1)]. The ROC curve is a
representing sensitivity versus (1-specificity), sensitivity is the true positive rate, and
(1-specificity) is the false positive rate, the network is very good when 100%
sensitivity and 100% specificity. The classification results obtained True Positive(TP),
False Positive(FP), True Negative (TN), and False Negative (FN). The percentage for
testing accuracy obtained from these parameters. A perfect classifier when the curve
has AUC = 1 and a completely random classifier has AUC = 0.5. This range [0, 1] of

AUC values usually the model will score value between these ranges.



Chapter 4

Experiments and
Results
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Experiments and Results

4.1.1 Results of Extrapolating Factors Affecting CCS in Palestinian Governorates.

The factors determining work was divided into two parts, the first one was the implementation of
algorithms to the entire combined data of the Palestinian governorates, and the second one was the
implementation of algorithms to all Palestinian governorates separately showing the influencing
factors in the governorates as a whole and showing each governorate separately, respectively. The
results showed that the EM algorithm is completely identical to the KSOM algorithms it depends
on the standard deviation of the input that was entered so that mathematically, according to a
special analysis of the standard deviation in the algorithms, then account these factors are
considered and considering them the factors affecting the strength of the concrete's compressive
as shown in the tables below. All the algorithms were applied to the combined data collected from
all governorates so that each algorithm shows its results, and it can be deduced that the EM and
KSOM algorithms are completely similar, and thus it can be relied on these two algorithms to
determine the main factors that affect Palestinian governorates Concrete Compressive Strength
(PCCS).

The Computing Environment in this work is Dell Latitude E5430 g: 15-3210M 2.50GHz, RAM:
12GB, HD: 256 SSD with windows 10 pro. Based on previous studies and special analysis in each
algorithm, it is possible to rely on the standard deviation in determining the factors that affect
concrete Compressive Strength, so that in the EM and KSOM algorithms, when the data is divided
into a certain number of clusters, the largest value of the concrete Compressive Strength that was
taken, and the clusters that are taken and completed so that the specific results that have been
determined in the cluster of the largest value are taken into consideration, if the standard deviation

is close to zero or turns to zero, then this factor is considered as a factor affecting the Compressive
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Strength of the concrete. But in the K-Means algorithm, the data were divided on a certain number
of clusters, then the largest value of the concrete compressive strength is taken, and the whole
cluster is also taken so that it is looked at the specific results that have been determined in the
cluster of the largest value if the recorded value is greater than the original value in the first column,
then its factors influencing concrete Compressive Strength are considered. This analysis was based
on previous studies as mentioned in the research paper [20].

The dataset is first selected, and then implement these algorithms on combined data of the
Palestinian governorates, In general, the dataset consists of 8 input parameters (Fine Aggregates,
Coarse Aggregates, Super plasticizer, Water, Cement, W/C ratio, Age, and Location) were
examined against Concrete Compressive Strength (CCS) using these algorithms (EM, KSOM, K-
Means). This section compares and evaluates these algorithms using combined datasets from the
Palestinian governorate to investigate the most important factors that affect the concrete
component mix. Table A.1 shows the main results of EM algorithms. To extract these results,
different datasets were used with different numbers of clusters (k=3, 4, 5, 6, 7, 8, 9, 10, 20, and
50) as represented in table A. 1.

Table A. 1: ALL Governorates of Palestine “EM Results”:

Number of Main factors that affect Concrete Compressive
Clusters Strength

K=3 W/C ratio, SP, Location, Age
K=4 W/C ratio, SP, Location, Age
K=5 W/C ratio, SP, Location, Age

K=6 W/C ratio, SP, Location, Age
K=7 W/C ratio, SP, Location, Age
K=8 W/C ratio, SP, Location, Age
K=9 W/C ratio, SP, Location, Age
K=10 W/C ratio, SP, Location, Age
K=11 W/C ratio, SP, Location, Age
K=20 W/C ratio, SP, Location, Age
K=50 W/C ratio, SP, Location, Age
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For each cluster as mentioned above, mathematical values are used, called standard deviation. In
our method, this parameter is used to detect the main influence factors that affect the Compressive
Strength of concrete. For example, when K=10, it has four factors (W/C ratio, Age, Location, Super
plasticizer). After the implementation of the EM algorithm for detecting the main factors that affect
Concrete Compressive Strength (CCS) and analyzing the results extracted from the EM algorithm,
the results show that the EM model archives the optimal mix of concrete components. After
applying EM on the combined dataset of the Palestinian governorate many times with several
clusters, the main parameters were detected on their standard deviation values. Table A. 2
represents the main factors that affect Concrete Compressive Strength and their standard deviation
values.

KSOM algorithm is also used for detecting the main factors that affect Concrete Compressive
Strength after applying KSOM on the combined dataset of Palestinian governorates many times
with several clusters. The main parameters are detected on their standard deviation values. Table
A. 3 represents the main factors that affect Concrete Compressive Strength and these parameters
(SP, W/c ratio, Age, Location) were obtained from this algorithm.

Table A. 2: List of the main factors with their standard deviations by EM.

Standard Deviation Main factors that affect Concrete
NS @i S ETEE Compressive Strength

1.3022 SP

K=3 0.0483 WI/C ratio
0 Age

1.9566 Location
1.401 SP

K= 4 0.0383 WI/C ratio
0.0001 Age

1.7236 Location
1.2715 SP

K=5 0.0516 WI/C ratio
0.001 Age

0.4927 Location
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1.382 Sp
0.0457 WI/C ratio
0.031 Age
0.5921 Location
1.2532 SP
0.043 WI/C ratio
0.0896 Age
0.8399 Location
1.2790 SP
0.77 W/C ratio
0.0196 Age
0.7301 Location
1.2837 SP
0.0514 W/C ratio
0.5156 Age
0.4934 Location
1.3837 SP
0.0414 WI/C ratio
0.3152 Age
0.4358 Location
1.4033 SP
0.0224 WI/C ratio
0.1414 Age
1.0054 Location
1.5033 SP
0.0234 WI/C ratio
0.2414 Age
1.0054 Location
1.7544 SP
0.0555 WI/C ratio
0.3196 Age
0.7298 Location

Table A. 3: All Governorates of Palestine “ KSOM Results”.

Name KSOM
Ngmstee';,:f Main factors that affect Concrete Compressive Strength
k=3 SP, W/c ratio, Age, Location
K=4 SP, Wi/c ratio, Age, Location
K=5 SP, Wi/c ratio, Age, Location
K=6 SP, W/c ratio, Age, Location
K=7 SP, W/c ratio, Age, Location
K=8 SP, W/c ratio, Age, Location
K=9 SP, W/c ratio, Age, Location
K=10 SP, W/c ratio, Age, Location
K=11 SP, W/c ratio, Age, Location
K=50 SP, W/c ratio, Age, Location
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K-mean algorithm is also used for detecting the main factors that affect Concrete Compressive
Strength, after applying K-Means on the combined dataset of Palestinian governorates many times
with different numbers of clusters as shown in Table A. 4. The main parameters are detected on
their values and Table A. 5 represents the main factors that affect Concrete Compressive Strength
and these parameters (Coarse Aggregates, Fine Aggregates, SP, w/c ratio, Location, and Age) were
obtained from this algorithm. Table A. 6 represents the comparison between the three algorithms
to detect the main factors that affect the Compressive Strength of concrete. K-Mean algorithm
produces these parameters (Coarse Aggregates, Fine Aggregates, SP, wi/c ratio, Location, and Age)
and according to the results which were obtained in EM and KSOM algorithms ( SP, w/c ratio,
Location, and Age ), K-Mean shows distinguished factors which are the (Coarse Aggregates and
Fine Aggregates).lt is clear that the three algorithms show intersection and provide different results
and the analysis concludes that these factors (SP, w/c ratio, Location, and Age ) are common and

they are the four primary components that affect Concrete Compressive Strength).

Table A. 4: Results for K-Means algorithm based on different numbers of clusters (K=3, 5, 7 and 9).

Numbe | Result for K=3,5,7.,9

r of

clusters

K=3 Cluster$
Attribute Full Data a 1 2

(5e@.8) (228.8) (185.0) (87.@)

Coarse agg 1189.8952 1139.8596 1189.3924 1322.@92
Fine Aggegate £43.7344 630.85561 647.7946 537.8161
Water 158.172 158.4386 157.8757 158.1@834
Cement 322.646 321.7982 321.8973 328.1689
5p 1.9357 2.8587 1.9365 1.6156
w/c Ratio B.4955 B.4955 B.4964 B.4933
Age 13.594 5.21@5 28 4,931
Location 4.P665 4.9868 4.1189 1.5482
s 225.5513  175.211 313.8732 175.4138
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K=5 Cluster#
Attribute Full Data a 1 2 3 4
(500.8) (183.8) (174.8) (87.@) (58.8) (78.8)
Coarse agg 1189.8952 1181.833 1287.8299 1322.892 932.8655 1284.2877
Fine Aggegate 643.7344 686.4819 626.1988 537.8161 954.8517 618.9641
Water 158.172 167.381 157.9823 158.1834 159.431  145.859
Cement 322.646 371.5146 322.488 328.1609 291.8621 275.3846
sP 1.9357 1.4769 1.6963 1.6156  4.8869 1.3886
w/c Ratio @.4955 .4503 @.4965 ®.4933 ®.5359 ®.5296
Age 13.594  4.98@6 28 4.931 9.8793 5.2564
Location 4.866 5.3495 4.1437 1.5482 3.4138 5.5
s 226.5513 199.8373 328.7886 175.4138 141.2831 158.1283
K=7 attribute Full Data @ 1 2 3 a 5 6
(sea.a) (s3.8) (87.@) (87.8) (se.8) (78.@) (91.8) (54.8)
Coarse agg 1189.8952 1282.7589 1182.4299 1322.892 1159.66 1284,2877 1221.4286 938.5837
Fine Aggegate 643.7344 6BB.7434 674.2892 537.8161 812.4 £18.9641 594,1429 955,8487
Water 158.172 163.2875 144.7931 158.1834 171.64 145,859 17e.7532 159
Cement 322.648 372 268.2184 328.1689 371 275.3846 371.8571 293.5741
SP 1.9357 2.7884 1.9123 1.6156 @8.138 1.3886 1.9558 4.7487
w/c Ratio @.4955 B.4379 @.5339 @.4933 B.4634 8.5296 8.4991 @.53
Age 13.594 5.8377 23 4,931 4,92 5.2564 28 3.537
Location 4,866 5.6838 4,5857 1.5482 5.83 5.5 4,8352 3.2963
Cs 226.5513 282,426 256.1974 175.4138 197.8932 158.1283 386.1516 142,888
_ Cluster®
K_g Attribute Full Data =] 1 2 3 4 5 6 7 8
(5e8.0) (55.8) (71.8) (49.8) (45.@) (58.8) (62.8) (54.@) (45.8) (51.8)
Coarse agg 1189.8952 1189.1636 1155.0761 1322.0204  1162.4 1204.2647 1170 930.5037 1321.5778 1299.9605
Fine Aggegate 643.7344 ©6B5.9636 699.8885 537.9592 6l2.6667 6l@.5971 625.8548 955.8487 538.8444 563.7255
Water 158.172 162.3818 147.5483 174.449 173.6 145.4786 163.8386 159 168.8667 136.8839
Cement 322.646 371.7455 278,493 376.1224 373.3333 283.8882 372.7258 293.5741 338.2222 262.1569
sSP 1.9357 2.592 2.8531 1.9347 5] 1.4946 1.9719 4.7487 1.5836 1.8933
w/c Ratic 8.4955 B.4358 8.539 B.4749 8.466 B.5246 8.4991 B.53 B.4922 B.5241
Age 13.594 5.8364 28 4,9592 4.8667 5.2353 28 8.537 28 5.8392
Location 4.866 5.3818 5 1.1837 5.2 5.8529 5.1613 3.2963 1.4667 2.5898
s 226.5513 213.8673 258.8911 196.9184 195.2369 153.8381 391.6887 142.868 328.8667 149.3784
Table A. 5: ALL Governorates of Palestine “K-Mean Results”.
Name K-mean
Number of Clusters Main factors that affect Concrete Compressive Strength
K=3 Coarse Aggregates, Fine Aggregates, SP, w/c ratio , Location , Age
K=4 Coarse Aggregates, Fine Aggregates, SP, w/c ratio , Location , Age
K=5 Coarse Aggregates, Fine Aggregates, SP, wic ratio, Location , Age
K=6 Coarse Aggregates, Fine Aggregates, SP ,w/c ratio, Location , Age
K=7 Coarse Aggregates, Fine Aggregates, SP ,w/c ratio, Location , Age
K=8 Coarse Aggregates, Fine Aggregates, SP ,w/c ratio, Location , Age
K=9 Coarse Aggregates, Fine Aggregates, SP, w/c ratio, Location , Age
K=10 Coarse Aggregates, Fine Aggregates, SP ,w/c ratio, Location , Age
K=11 Coarse Aggregates, Fine Aggregates, SP, w/c ratio, Location , Age
K=20 Coarse Aggregates, Fine Aggregates, SP ,w/c ratio, Location , Age
K =50 Coarse Aggregates, Fine Aggregates, SP ,w/c ratio, Location , Age
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Table A. 6: Summary of the main parameters that affect compressive strength of concrete using the three
algorithms in All Governorates.

Name EM KSOM K-Means Intersection
Main SP, Wilc ratio , | SP, WI/c ratio , Coarse SP, Wi/c ratio
parameters Age , Location Age , Location Aggregates, Fine , Age,
Aggregates, SP Location
,w/c ratio,
Location , Age

Table A. 7: the relationship between the numbers of cluster, iteration, sum square error and CCS using
K- Mean algorithm.

CCS (Average Actual Data) =
K mean # of iteration SSE 280.84
K=3 4 156.3 313.8732
K=4 12 127.5 327.0286
K=5 12 116.146 328.7086
K=6 15 102.409 374.1795
K=7 11 98.3 386.1516
K=8 9 86.622 391.6887
K=9 8 80.55 391.6887
K=10 16 69.8 395.4407
K=11 16 67.5 395.4407
K=20 9 49.38639 415.2342
K =50 7 24.319 458.6667
Average 379.8273818

Table A. 7 represents the relationship between the numbers of clusters, iteration, sum square error, and
CCS using the K- Mean algorithm, while Table A. 8 shows the prediction of Compressive Strength
of Concrete (CCS) by implementation both KSOM and K-means utilize WEKA tool. It is found
that the actual average of Compressive Strength of Concrete (CCS) is 280.84 and by making a
comparison between the results of the Compressive Strength of Concrete (CCS) of the two

algorithms, it is found to be similar between both algorithms.
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Table A. 8: Results of the Compressive Strength of Concrete (CCS) of K-Mean and KSOM algorithms.

Name CCS (Average Actual Data) = 280.84
Number of Clusters N CC.S k_ngh-value KSOM CCS high-value prediction
prediction
K=3 313.8732 333.3681
K=4 327.0286 343.9022
K=5 328.7086 353.9022
K=6 374.1795 351.9931
K=7 386.1516 341.9731
K=8 391.6887 351.9631
K=9 391.6887 371.9731
K=10 395.4407 391.3
K=11 395.4407 393.0685
K=20 415.2342 405.0412
K =50 458.6667 420.0784
Average 379.8273818 368.9593636

The values above in Table A. 8 show that the results for the prediction of Concrete Compressive
Strength (CCS) of both algorithms are very close or similar sometimes. The result shows that the
K-mean algorithms can be swimmingly utilized to have a more accurate prediction for improving
the Concrete Compressive Strength (from average actual data 280.84 to average prediction data
379.82). These algorithms were implemented to Palestinian Governorates datasets and compared
these results were obtained from these algorithms to find the main factors that affect Palestinian
Concrete Compressive Strength (PCCS) using the WEKA tool. From the analysis results, it is
shown that EM and KSOM are the best accurate and effective algorithms to find these factors that
affect Palestinian governorates Concrete Compressive Strength (PCCS), and they can obtain that
K-Means and KSOM algorithms are effective algorithms for predicting the Palestinian
Governorates Concrete Compressive Strength (PCCS). Form the results in this section, could be
used to predict the effects of the main component of Palestine Concrete Compressive Strength
(PCCS). Table A. 3 shows the primary factors that predict the Palestinian governorates Concrete

Compressive Strength (PCCS), and these factors are (SP, w/c ratio, Location, and Age). The
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analysis of the information from Table A. 7 and Table A. 8 shows great links between the main
factors that affect Palestinian governorates Concrete Compressive Strength (PCCS) and the
prediction of Palestinian governorates Concrete Compressive Strength (PCCS) and the values for
these components are very similar among these algorithms. These results provide the threshold
value that increases and improves the Palestinian governorate's Concrete Compressive Strength
(PCCS). Also, these factors increase the Palestinian governorate's Concrete Compressive Strength
(PCCS) from average actual data 280.84 to average prediction data 379.82, and this leads to make
a percentage of increasing the performance technique from 28% to 38% of PCCS. Table A. 9
shows the summary of the main factors that improve the performance of Palestinian governorates
Concrete Compressive Strength (PCCS) that results were obtained from these algorithms.

Table A. 9: Summary of the main factors that improve the Performance of Concrete Compressive

Strength (PCCS).
Predictive EM KSOM K-Means Average Mean
factors value
SP 1.3037 1.3052 1.3086 4.2 1.9
W/c ratio 0.043 0.0507 0.4991 0.53 495.
Age 0.0896 0 28 15.5 12.937
Location 0.8399 .08859 4.8352 4 4.024
Coarse - - 1095.5 1189.79
Aggregates 1221.4286
Fine - - 775 555.455
Aggregates 594.14

In general, the implementation of these algorithms and obtained results show that these algorithms
are effective models for improving the prediction of the Palestinian governorate's Concrete
Compressive Strength (PCCS) and detecting the main factors that affect the Palestinian
governorate's Concrete Compressive Strength (PCCS). Some notes can be obtained from these
results, first note, it is important to note that the cost of super plasticizer (SP) and wi/c ratio is

beyond Palestinian governorates Concrete Compressive Strength (PCCS) and second note
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represents logically, location and age are also influencing factors in the study. Here it should be
noted that all the factors involved affect the compressive strength of concrete, but the study
confirmed that there are main factors that affect directly, and when Artificial Neural Networks
(ANNSs) are designed, all the inputs must be entered, because they are all influential.

4.1.2 Detecting Main Factors that Affect CCS in Jenin Governorate:

Jenin dataset is first selected, using these algorithms (EM, KSOM, and K-Means) were
implemented on the Jenin dataset to investigate the most important factors that affect the Concrete
Compressive Strength (CSS), In general, the dataset of Jenin consists of 7 input parameters (Fine
Aggregates, Coarse Aggregates, Super plasticizer, Water, Cement, W/C ratio, and Age) that were
examined against Concrete Compressive Strength (CCS) in Jenin Governorate. Table J. 1 shows
the main factors obtained from EM algorithms. To extract these results, different datasets were
used with different numbers of clusters (k=3, 5, 7, and 9) as represented in Table J. 1. For each
cluster as mentioned above, mathematical values are used, called standard deviation. In our
method, this parameter was used to detect the main factors that affect the Compressive Strength of
Concrete, for example when K=3, it has three factors (W/C ratio, Age, and Super plasticizer).
Table J. 2 represents the standard deviation values of the main factors that affect CSS.

Table J. 1: Jenin Governorate “EM Results”:

Number of Main factors that affect Concrete Compressive
Clusters Strength
K=3 WI/C ratio, SP , Age
K=5 WI/C ratio, SP , Age
K=7 WI/C ratio, SP , Age
K=9 WI/C ratio, SP , Age
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Table J. 2: list of the main factors with their standard deviation in Jenin Governorate.

Number of Standard Deviation Main factors that affect Concrete
Clusters Compressive Strength

1.4727 SP

K=3 0.0392 WI/C ratio
2.2064 Age
15118 SP

K=5 0.0343 WI/C ratio
1.6189 Age
1.5113 SP

K=7 0.0343 WI/C ratio
1.919 Age
0.0857 SP

K=9 0.015 WI/C ratio
0.1479 Age

KSOM algorithm is also utilized for detecting the main factors that affect Concrete Compressive
Strength, after running KSOM on the Jenin dataset several times with different numbers of clusters
and the main parameters are identified based on their standard deviation values, similar to the EM
measures. Table J. 3 shows the main factors that affect Concrete Compressive Strength and these
parameters (Coarse Aggregates, Fine Aggregates, SP, W/c ratio, and Age).

Table J. 3: Jenin Governorate dataset “KSOM Results”.

Name KSOM
Number of Clusters Main factors that affect Concrete Compressive Strength
k=3 Coarse Aggregates, Fine Aggregates, SP ,w/c Ratio , Age
K=5 Coarse Aggregates, Fine Aggregates, SP ,w/c Ratio , Age
K=7 Coarse Aggregates, Fine Aggregates, SP ,w/c Ratio , Age
K=9 Coarse Aggregates, Fine Aggregates, SP ,w/c Ratio , Age

K-mean algorithm is also used for detecting the main factors that affect Concrete Compressive
Strength after applying K-Means to the Jenin governorate dataset several times with different
numbers of clusters, as shown in Table J. 4 with their values. The main factors that affect Concrete
Compressive Strength are identified. Table J. 5 represents the main factors that affect Concrete
Compressive Strength and these parameters (Coarse Aggregates, Fine Aggregates, SP, w/c ratio,

and Age).
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Table J. 4: Results for K-Means algorithm based on some different number of clusters (K=3, 5, 7 and 9)
in Jenin Governorate.

Number | Result for K=3,5,7,9
of
clusters
K=3 Final cluster centroids:
Cluster#
Attribute Full Data 2] 1 2
(71.@) (18.9) (39.8) (14.0)
Coarse agg 1276.2254 1126.7222 1327 1327
Fine Aggegate 584.6761 751.5556 528 588
Water 174.5211 165.3333 175.7436 172.9286
Cement 351.9718 275 375.8974 344 .2857
SP 2.3789 4.4556 1.8851 2.5071
w/c Ratio 98.5011 8.59086 8.4687 8.6764
Age 11.7465 14.8556 4.8462 28
cs 193.8631 57.9456 192.9231 370©.9286
K=5 Final cluster centroids:
Cluster#
Attribute Full Data <] 1 2 3 4
(71.8) (15.8) (26.8) (8.8) (15.8) (7.8)
Coarse agg 1276.2254 1886.6667 1327 1327 1327 1327
Fine Aggegate 584.6761 796.2667 528 528 528 528
Water 174.5211 171.8 163.8769 1968.625 169.68 193.5714
Cement 351.9718 288 368 381.25 345.3333 392.8571
5P 2.3789 4.,9467 2.88615 & 2.3833 5]
w/c Ratioc 8.5811 B.5967 8.45956 8.5 B.682 8.4929
Age 11.7465 14,3333 4.,8462 3 28 7
cs 193,.8831 33.5347 189.4231 148.5 363.5333 258.7143
K=7 Final cluster centroids:
Cluster#
Attribute Full Data e 1 2 3 4 5 6
(71.@) (7.8) (6.@) (3.8) {14.8) (6.8) {9.@) (26.8)
Coarse agg 1276.2254 1141.,2857 1327 1327 1327 1327 1@7@.8889 1327
Fine Aggegate 584.6761 737.2857 525 528 588 528 812.3333 528
Water 174.5211 166.7143 182 284 172.9286 196 171.4444 163.8769
Cement 351.9718 275.7143 366.6667 446 344, 2857 466 288 368
SPp 2.3789 44,3929 a8 ] 2.3871 ] 5.85 2.8615
w/c Ratio @.5811 8.5957 @8.4967 8.51 B.6764 B8.49 8.5933 B8.4596
Age 11.7465 28 3.6667 3 28 7 5.2222 4.,8452
Cs 193.8831 74,5257 157.6667 134.6667 378.9286 254.8333 26.8156 189.4231
K=9 Final cluster centroids:
Cluster#
Attribute Full Data ] 1 2 3 4 5 6 7 8
(71.0)  (7.8)  (5.8)  (3.8) (14.8)  (6.0)  (B.B) (20.0)  (2.8)  (6.8)
Coarse agg 1276.2254 1141,2857 1317.2 1327 1327 1327 1045 1327 1327 1327
Fine Aggegate S84.6761 737.2857 542.8 528 588 528 838.625 528 528 528
Water 174,5211 166.7143 177.2 284 172.9286 196 171.625 161.6 188 168
Cement 351.9718 275.7143 336 4p@  344,2857 400 280 343 400 450
SP 2.3789 4,3929 B.45 a 1.3871 a 5.4 2.76 a 3.2
w/c Ratio 8.5811 8.5957 8.53 8.51 8.6764 8.49 8.5912 8.4715 8.47 8.42
Age 11.7465 28 3.8 3 28 7 5.5 4.8 3 5
cs 193.8031 74,5257  129.436 134.6667 378.0286 254.8333 26,8095 174.2 162.5 2481667
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Table J. 5: Main factors that affect Concrete Compressive Strength by K-Mean Algorithm in Jenin

Governorate.
Name K-mean
Number of Clusters Main factors that affect Concrete Compressive Strength
K=3 Coarse Aggregates, Fine Aggregates, SP, w/c ratio , Age
K=5 Coarse Aggregates, Fine Aggregates, SP, w/c ratio , Age
K=7 Coarse Aggregates, Fine Aggregates, SP, w/c ratio , Age
K=9 Coarse Aggregates, Fine Aggregates, SP, w/c ratio , Age

Table J. 6: Summary of the main parameters that affect Compressive Strength of concrete using the three
algorithms in Jenin Governorate.

Name EM KSOM K-Means Intersection
Main SP, Wi/c ratio , Coarse Coarse SP, Wic
parameters Age Aggregates, Fine | Aggregates, Fine | ratio, Age

Aggregates, SP,
wic ratio , Age

Aggregates, SP,
wi/c ratio , Age

Table J. 6 represents a comparison of the three algorithms for detecting the main factors that affect
Concrete Compressive Strength. The study concludes that these factors (SP, w/c ratio, and Age)
are typical and they are the three primary components that affect Concrete Compressive Strength

in the Jenin governorate.

4.1.3 Detecting Main Factors that Affect CSS in Ramallah Governorate:

The Ramallah Governorate dataset was chosen first and then these algorithms were
applied to the Ramallah dataset. The dataset, which contains seven input parameters
(Fine Aggregates, Coarse Aggregates, Superplasticizer, Water, Cement, W/C ratio, and
Age) were compared to Concrete Compressive Strength (CCS) in  Ramallah
Governorate using these algorithms (EM, KSOM, K-Means). This section compares
and tests these algorithms using the Ramallah Governorate dataset to find the main
factors that affect the concrete mix. Table R. 1 displays the key results of EM
algorithms, various datasets with different numbers of clusters (k=3, 5, 7, and 9) were

used to obtain these results as shown in table R. 1. After applying EM on the Ramallah
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times with different

numbers

of clusters,

the main

parameters were detected on their standard deviation values. Table R. 2 represents the

main factors that affect Concrete Compressive Strength and their standard deviation

values.

Table R. 1: Main factors that affect Concrete Compressive Strength in Ramallah Governorate by EM.

Number of Clusters Main factors that affect Concrete Compfessive Strength
in Ramallah Governorate By EM Algorithm

K=3 W/C ratio, SP , Age

K=5 W/C ratio, SP, Age

K=7 W/C ratio, SP , Age

K=9 W/C ratio, SP , Age

Table R. 2: List of the main factors with their standard deviation in Ramallah Governorate.

Standard Deviation Main factors that affect Concrete
Number of Clusters .
Compressive Strength
1.2764 SP
K=3 0.0312 WI/C ratio
1.0462 Age
1.7264 SP
K=5 0.0312 WI/C ratio
0.369 Age
0.6507 SP
K=7 0.0191 WI/C ratio
1.0462 Age
0.2254 SP
K=9 0.0147 WI/C ratio
1.0462 Age

Table R. 3 shows the main factors that affect Concrete Compressive Strength produced
by KSOM clustering and KSOM is utilized to detect the main factors that affect
Concrete Compressive Strength, After applying KSOM on the dataset of Ramallah
governorate several times with different numbers of clusters, the main factors are
detected based on their standard deviation values, these parameters (SP, W/c ratio, and

Age) were obtained from this algorithm.
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Table R. 3: Main factors that affect Concrete Compressive Strength by KSOM algorithm In Ramallah

Governorate.
Name KSOM
Main factors that affect Concrete Compressive
Number of Clusters Strength by KSOM algorithm In Ramallah
Governorate.
k=3 SP ,w/c Ratio , Age
K=5 SP ,wi/c Ratio , Age
K=7 SP ,wi/c Ratio , Age
K=9 SP ,wi/c Ratio , Age

Table R. 5 represents the main factors that affect concrete compressive strength
obtained from the K-mean clustering algorithm and the K-mean algorithm is another
algorithm that used for detecting the main factors that affect Concrete Compressive
Strength, and these factors (Coarse Aggregates, Fine Aggregates, SP, w/c ratio and
Age) were obtained from this algorithm after applying K-Means on the dataset of
Ramallah governorate many times with different numbers of clusters as shown in Table

R. 4 with their values.

Table R. 4: Main factors that affect Concrete Compressive Strength by K-Mean Algorithm in Ramallah

Governorate.
Name K-mean
Number of Clusters Main factors that affect Concrete Compressive Strength
K =3 Coarse Aggregates, water , cement, SP , W/C ratio, Age
Kes Coarse Aggregates, water , cement, SP , W/C ratio, Age
K= Coarse Aggregates, water , cement, SP , W/C ratio, Age

Coarse Aggregates, water , cement, SP , W/C ratio, Age

K=9
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Table R. 5: Results for K-Means algorithm based on some different numbers of clusters (K=3, 5, 7 and 9)
in Ramallah Governorate.

Number | Result forK=3,5,7,9
of
clusters
K=3 Final cluster centroids:
Cluster#
Attribute Full Data =] 1 2
(1@2.8) (49.@) (27.8) (26.8)
Coarse agg 1225.2255 1173, 3469 1375 1167 .4615
Fine Aggegate 502,.8922 B17.9592 525 Bl6.1538
Water 161.3824 162.6531 156.6296 163.9231
Cement 346.6569 354.8816 324.4874 355.7692
SP 1.6769 1.4286 2.5941 1.19235
w/c Ratio 8.4875 B.461 8.4844 8.4683
Age 12.6275 44,8776 11.8889 28
cs 257.7112 197.8889 253.1222 375.3731
K=5 Final cluster centroids:
Cluster#
Attribute Full Data a 1 2 3 4
(182.8) (23.8) {14.@) (22.8) (25.8) {18.@)
Coarse agg 1225.2255 1179.1384 1317.8571 1l66.8989 1165.56 1367.2222
Fine Aggegate 592.8922 (18.6957 549, 2857 617.2727 6le.4 531.3889
Water 1el.3824 1e6l.1384 175.8571 162.8182 165.36 143.1667
Cement 346.6569 369.5652 393.8571 347.7273 344 253.8556
SP 1.6769 2.5652 3.1486 B.8273 B.36 2.2644
w/c Ratio B.4675 B.4343 B.4757 B.47 B.4832 B.5R22
Age 12.6275 4,.7391 19,9286 28 4,92 5.9444
FS 257.7112 287.7913 358.68714 366.5727 183.9536 212.185%6
K=7 Final cluster centroids:
Cluster#
Attribute Full Data ] 1 2 3 4 5 6
{162.8)  (18.8) (6.8)  (26.8)  (25.8) (5.8)  (18.8)  (12.8)
Coarse agg 1225.2255 1155 1375 1167.4615 1165.56 1266 1375 1363.3333
Fine Aggegate 592.8922 6le 525 B16.1538 6l6.4 658 525 534.53833
Water 161.3824 162 169.5 163.9231 165.36 158 172.5 134.75
Cement 346.6569 375 3B64.8333 355.7692 344 358 374 256.6667
SP 1.6769 2.5 2.9167 1.1923 @.36 2.8 2.99 2.8533
w/c Ratio B.4675 B.43 @.4783 B.4623 B.4832 B.45 @.465 B8.5117
Age 12.6275 4.7778 28 28 4.92 4.6 5.4 8.8333
s 257.7112 216.8111 393.9167 375.3731 188.9536 199.8 236.23 191.5
K_g Final cluster centroids:
Cluster#
Attribute Full Data 2] 1 2 3 4 5 6 7 8
(182.0) (9.8)  (11.e)  (20.8)  (20.@) (3.8) (2.8) (7.8)  (15.8)  (15.8)
Coarse agg 1225.2255 1175 1282.4545 1256.1 1173.2 1266 1266 1375 1141.6667 1375
Fine Aggegate 592,8922 618 578.6364 614 618 658 658 525 612 525
Water 161.3824 178 169.8182 163.3 169.2 158 158 129.5714 151.8667 163.3333
Cement 346.6569 498 381.7273 347.5 355 358 358 238.5714 326.6B67 346
SP 1.6769 3.2 3.8527 1.6818 a 2.8 2.8 1.9886 1.8133 2.7667
w/c Ratio @.4675 @.42 @.4445 @.472 8.479 8.45 B.45 @.5171 @.4653 8.4767
Age 12.6275 4.7778 28 28 4.8 3 7 14,8571 5.1333 5.1333
s 257.7112 222.2667 485.6636 365.18 187.492 154 268.5 228.5429 196.22 218.9867
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Table R. 6: Summary of the main parameters that affect Compressive Strength of concrete using the three
algorithms in Ramallah Governorate.

Name EM KSOM K-Means Intersection
Main SP, W/c ratio |, Coarse SP, Wic
parameters Age Aggregates, ratio , Age

water , cement,
SP, Wi/c ratio , | SP , WIC ratio,
Age Age

K-Mean algorithm produces these factors (Coarse Aggregates, Water, Cement, wi/c
ratio, and Age) and according to the results obtained from EM algorithms (SP, wi/c
ratio and Age) and KSOM (SP, w/c ratio and Age), K-Mean shows distinguished
factors which are the (Coarse Aggregates, Fine Aggregates, Water, and Cement). Table
R. 6 represents the comparison between three algorithms to detect the main factors that
affect the Compressive Strength of concrete, it is clear that the three algorithms show
intersection and provide different results and the analysis concludes these factors (SP,
w/c ratio are Age) are common factors, and they are the factors that affect Concrete

Compressive Strength.

4.1.4 Detecting Main Factors that Affect CSS in Tubas Governorate:

Tubas Governorate dataset is first selected, and then these algorithms (EM, KSOM,
and K-Means) were implemented on Tubas Governorate dataset to detect the main
factors that affect Concrete Compressive Strength. Table T. 1 shows the main factors
that affect CSS by EM algorithms in Tubas. To extract these results, different datasets
were used with different numbers of clusters (k=3, 5, 7, and 9) as represented in Table
T. 1. After the implementation of the EM algorithm on the Tubas Governorate dataset

many times with different numbers of clusters, the main parameters were detected on
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their standard deviation values and table T. 2 represents the standard deviation values
of the main factors that affect Concrete Compressive Strength. The dataset consists of
7 input parameters as same each governorate was examined against Concrete

Compressive Strength (CCS) in Tubas Governorate.

Table T. 1: Main factors that affect Concrete Compressive Strength in Tubas Governorate by EM

Algorithm.
Number of Clusters Main fa_ctors that affect Concrete Compress_ive
Strength in Tubas Governorate By EM Algorithm
K=3 SP ,WI/C Ratio
K=5 SP ,W/C Ratio
K=7 SP ,WI/C Ratio , Coarse Aggregates, Fine Aggregates
K=9 SP ,W/C Ratio

Table T. 2: List of the main factors with their standard deviation in Tubas Governorate.

Standard Deviation Main factors that affect Concrete
Number of Clusters .
Compressive Strength

K=3 0.2622 SP
0.0083 WI/C ratio

K=5 0.2921 SP
0.0089 WI/C ratio
0.0114 SP

K=7 0.0033 WI/C ratio
0.1128 Coarse Aggregates
0.1128 Fine Aggregates

B 1.1226 SP
K=9 0.0553 WIC ratio

KSOM algorithm is also used to detect the main factors that affect Concrete
Compressive Strength. KSOM was implemented on Tubas Governorate Dataset many
times with several clusters and the main parameters were detected on their standard
deviation wvalues. Table T. 3 represents the main factors that affect Concrete
Compressive Strength and these parameters (Coarse Aggregates, Water, SP, Cement,

WI/C ratio, and Age) as an intersection between clusters.
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Table T. 3: Main factors that affect Concrete Compressive Strength by KSOM algorithm In Tubas
Governorate.
Name KSOM
Main factors that affect Concrete Compressive Strength
by KSOM algorithm In Tubas Governorate.

Number of Clusters

k=3 Coarse Aggregates, SP, age, water , cement

K=5 Coarse Aggregates ,water ,SP, cement , W/C ratio, age
K=7 Coarse Aggregates ,water, SP, cement , W/C ratio, age
K=9 Coarse Aggregates, water, SP , cement , W/C ratio, age

K-mean algorithm is also utilized to detect the main factors that affect Concrete
Compressive Strength, and K-Means was applied on the dataset of Tubas governorate
many times with different numbers of clusters as shown in Table T. 4 with their values.
Table T. 5 represents the main factors that affect Concrete Compressive Strength.
These parameters (Coarse Aggregates, Fine Aggregates, SP, wi/c ratio, and Age) are

produced by K mean.

Table T. 4: Main factors that affect Concrete Compressive Strength by K-Mean Algorithm in Tubas

Governorate.
Name K-mean
Number of Clusters Main factors that affect Concrete Compressive Strength
K=3 Coarse Aggregates ,water , SP ,cement , W/C ratio, age
K=5 Coarse Aggregates ,water, SP , cement , W/C ratio, age
K=7 Coarse Aggregates ,water , SP, cement , W/C ratio, age
K=9 Coarse Aggregates ,water , SP, cement , W/C ratio, age
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Table T. 5: Results for K-Means algorithm based on some different number of clusters (K=3, 5, 7 and 9)
in Tubas Governorate.
Numbe | Result for K=3,5,7,9
r of
cluster
S
K:3 Final cluster centroids:
Cluster#
Attribute Full Data =] 1 2
(65.8) (42.8) (16.8) (7.8)
Coarse agg 1319.4923 1315.381 1327 1327
Fine Aggegate 543 .8154 551.2381 528 528
Water 146 .55358 131 .3333 185.875 148
Cement 2958.3a877 295.7145 326.25 258
SP 1.3289 2.8443 1.921 ]
w/c Ratio 8.5851 2.4662 a8.57 &.59
Age 13.8769 12.7619 13.375 14,2857
Cs 213.2462 217.7143 224 .,.6875 168.2857
K=5 Cluster#
Attribute Full Data a 1 2 3 4
(65.2) (20.8) {18.8) (4.8) (g.2) f14.8)
Coarse agg 1319.4923 1327 1327 1327 1266 1327
Fine Aggegate 543.8154 528 528 528 E5@ 528
Water 145.5538 118.6552 184.6 148  178.125 163.2857
Cement 293.3877 278.6897 324 258 377.5 385.7143
SP 1.32@89 1.7655 @ @ 3.8325 1.7429
w/c Ratio @.5851 @.4586 @.57 8.59 8.495 B.5364
Age 13.8769 9,9655 4.6 4 13.375 28
Cs 213.2462  179.931 163.7 186.5  274.375 313.2143
K=7 Final cluster centroids:
Cluster#
Attribute Full Data ] 1 2 3 4 5 6
(65.8) (8.8) (18.@) (4.8) (8.8) (9.8) (11.8)  (15.8)
Coarse agg 1319.4923 1327 1327 1327 1266 1327 1327 1327
Fine Aggegate 543.8154 528 528 528 858 528 528 528
Water 146.5538 144 184.6 148 178.125 174.6667 154.3636 109
Cement 298.3877 325 324 250 377.5 3@3.3333 297.2727 258
5P 1.3289 2.2 ) @ 3.8325 @  1.8182 1.6
w/c Ratio B.5851 B.455 8.57 .59 8.495  8.5767  ©.5618 B.46
Age 13,8769 5.5 4.6 4 13,375 23 28 5.1333
€s 213.2462  198.875 163.7 106.5 274,375 294,.8889 295.8182 148.2667
K:9 Final cluster centroids:
Cluster#
Attribute Full Data 5] 1 2 3 4 5 [ 7 8
(65.8) (3.@) (18.@) (4.8) (8.8) (9.8) (5.8) (15.8) (5.2) (6.8)
Coarse ags  1319.4923 1327 1327 1327 126 1327 1327 1327 1327 1327
Fine Aggegate 543.8154 528 528 528 558 528 528 528 528 528
Water 146.5538 143.3333 184.6 148 178.125 174.6667 142.8 189 144.4 189
Cement 298.,3877 316.6667 324 258 377.5 3B3.3333 3la 258 338 258
SP 1.3289 2.1333 2] ] 3.8325 1.912 2.83 1.6 2.24 1.6
w/c Ratio 8.5851 .46 8.57 8.59 8.495 8.5767 B.464 @.46 @.452 .46
Age 13.8769 3 4.6 4 13.375 28 28 5.1333 7 28
s 213.2462 138.3333 163.7 186.5 274,375 294 .8889 346.2 148.2667 235.2 253.8333
Table T. 6: Summary of the main parameters that affect compressive strength of concrete using the three

algorithms in Tubas Governorate.
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Name EM KSOM K-Means Intersection
Main parameters Coarse
Coarse Aggregates i
WI/C Ratio , SP | Aggregates, Fine ,water, SP , W/CSF;at'O ’
Aggregates, SP cement , W/C
,w/c Ratio ratio, age

Table T. 6 represents the comparison between the three algorithms To detect the main
factors that affect Compressive Strength of concrete. K-Mean algorithm produces these
parameters (Coarse Aggregates, Water, SP, Cement, W/C ratio, and Age). According
to the results obtained from EM algorithms (SP and w/c ratio) and KSOM (Coarse
Aggregates, Fine Aggregates, SP and w/c Ratio), this leads to KSOM and K-Mean to
show distinguishing factors which are the (Coarse Aggregates, Fine Aggregates, Water
and Cement). It is clear that the three algorithms show intersection and provide
different results and the analysis concludes that these factors (SP and wi/c ratio) are

common factors that affect Concrete Compressive Strength.

4.1.5 Detecting Main Factors that Affect CCS in Salfit Governorate:

The dataset of Salfit Governorate is first selected and then implemented these
algorithms on Salfit Governorate dataset. In general, the dataset consists of 7 input
parameters (Fine Aggregates, Coarse Aggregates, Superplasticizer, Water, Cement,
W/C ratio, and Age) that were examined against Concrete Compressive Strength
(CCS) in Salfit Governorate using these algorithms (EM, KSOM, K-Means). This
section compares and evaluates these algorithms using Salfit Governorate dataset to
investigate the main or primary factors that affect the concrete mix. Table S. 1 shows
the main results of EM algorithms. To extract these results, different datasets were used

with different numbers of clusters (k=3, 5, 7, and 9) as represented in Table S. 1. After
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applying EM on the Salfit Governorate dataset many times with a different number of
clusters, the main parameters were detected on their standard deviation values and
Table S2 represents the main factors that affect Concrete Compressive Strength and

their standard deviation values.

Table S. 1: Main factors that affect Concrete Compressive Strength in Salfit Governorate by EM
Algorithm.

Number of Clusters Main factors that affect concrete compressive strength
Salfit Governorate By EM Algorithm
K=3 WI/C Ratio, SP, age
K=5 W/C Ratio, SP, age
K=7 WI/C Ratio, SP, age
K=9 WI/C Ratio, SP, age
Table S. 2: List of the main factors with their standard deviation in Salfit Governorate.
Number of Clusters Standard Deviation Main factors thgt affect Concrete
Compressive Strength
1.3884 SP
K=3 0.065 W/C ratio
0.0031 age
0.969 SP
K=5 0.0378 W/C ratio
0.08 age
0.3771 SP
K=7 0.0067 WI/C ratio
1.7427 age
0.5636 SP
K=9 0.028 WI/C ratio
1912 age

Table S. 3 represents the main factors that affect Concrete Compressive Strength
produced by KSOM, and these parameters (W/C Ratio, SP, and age) as an intersection
between clusters. KSOM is another algorithm that is utilized to detect the main factors
that affect Concrete Compressive Strength, after applying KSOM on Salfit
Governorate dataset many times with different numbers of clusters. The main factors

were detected on their standard deviation values.
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Table S. 3: Main factors that affect Concrete Compressive Strength by KSOM algorithm In Salfit
Governorate.
Name KSOM
Main factors that affect Concrete Compressive Strength
by KSOM algorithm In Salfeet Governorate.

Number of Clusters

k=3 W/C Ratio, SP, age
K=5 W/C Ratio, SP, age
K=7 W/C Ratio, SP, age
K=9 W/C Ratio, SP, age

K-mean algorithm is another algorithm that is used to detect the main factors that affect
Concrete Compressive Strength, after applying K-Means on the dataset of Salfit
governorate many times with different numbers of clusters as shown in Table S. 4 with
their values. Table S. 5 represents the main factors that affect Concrete Compressive
Strength and these parameters (Coarse Aggregates, W/C Ratio, and age) as an
intersection between clusters were obtained from this algorithm. Table S. 6 represents
the comparison between three algorithms to detect the main factors that affect
Compressive  Strength of concrete. K-Mean algorithm produces these parameters
(Coarse Aggregates, W/C Ratio, and age) and according to the results obtained from
EM algorithms (W/C Ratio, SP and age) and KSOM (w/c Ratio, SP and Age). K-Mean
shows a distinguishing factor which is the (Coarse Aggregates and SP). It is clear that
the three algorithms show intersection and provide different results and the analysis
concludes that these factors (Age and w/c ratio) are common factors and are the two

primary components that affect Concrete Compressive Strength.
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Table S. 4: Results for K-Means algorithm based on some different number of clusters (K=3, 5, 7 and 9)
in Salfit Governorate.

Number | Result for K=3,5,7,9
of
clusters
|<:3 Final cluster centroids:
Cluster#
Attribute Full Data 5] 1 2
(71.@) (27.@) (22.@) (22.8)
Coarse agg 938.85a7 955 .7295 18as5.9891 845 .4955
Fine Aggegate 942 .,.4789 923.3 878.4891 183a8.83564
Water 159.45a7 159 .,.4444 158.8182 1laa.a989
Cement 295.9577 291 .4815 282.5 314 .96891
SP 4.3521 4.163 3.5636 S5.3727
w/c Ratio 2.5263 2.533 ®.5527 2.4915
Age 14 .8282 28 5.9891 =
Cs 181 .e831 238 .8219 211 .5895 98 .3373
F(:5 Final cluster centroids:
Cluster#
Attribute Full Data -] 1 2 E] 4
(71.8) (1e.8) (28.8) (18.8) (17.8) (6.8)
Coarse agg 935.8587 889 .66 1@le.5 846.9444 1@le.2941 845.8333
Fine Aggegate 942 .4789 Q997 .1 87@.25 1a32.7778 868.2353 1e31.6667
Water 159.45a87 173.6 153.5 155.8333 158.8235 151.6667
Cement 295 .9577 271 285.75 322.66867 2586.1765 319.16867
sSP 44,3521 4.7 3.52 5.4778 3.4947 5.6
w/c Ratio 8.5263 8.541 8.543 &8.4589 B2.53565 8.4533
Age 14.8282 14.6 B 4.,.7778 28 28
Cs 181.aa31 34.972 229,915 183.8833 315.5353 111.5333
K=7 Final cluster centroids:
Cluster#
Attribute Full Data @ 1 2 3 4 5 6
(71.@) (7.8) (19.8) (9.8) (15.8) (5.8) (9.8) (7.8)
Coarse agg 035.8587 B85.5714 1815 B41.6667 1823.3333 851 B895.2111 348
Fine Aggegate 0942.4789 985.5857 B862.3684 993,3333 B64.6667 1812 1@11.3222 lase
Water 159.4587 186.4286 153.4211 148.8889 151.3333 146 1R4,5556 169,2857
Cement 295.9577 271.4286 286.3158 358.6667 287.B6BG7 331 272.7778 28B8.5714
SP 4,3521 4.7714 3.4421 6.7778 3.2933 5.92 4,6389 4
w/c Ratio B.5263 @.6814 B.5411 B.4178 @.5387 B.444 B. 6844 B.5
Age 14.8282 28 5.9474 5.2222 28 23 5.2222 4.7143
Cs 151.8831 186.5414 227.4895 29,2333 3088.8867 56.8 53.3811 224.9714
K:9 Final cluster centroids:
Cluster#
Attribute Full Data ] 1 2 3 4 5 B 7 8
(71.@) (5.@)  (19.8) (9.8) (4.2) (2.@) (9.0) (7.0) (9.8) (7.@)
Coarse agg 938.8587 895.94 1815 841.6667 846.25 845 895.2111 348 1843.3333 9se
Fine Aggegate 942.4739 999,32 862.3684 993.3333 1853.75 987.5 1811.3222 1888 B883.3333 827.1429
Water 159.4587 171 158.4211 148.8889 152.5 158 184.55356 169.2857 135.5556 188.5714
Cement 295.9577 273 286.3158 35B.6667 295 367.5 272.7778 1288.5714 243.3333 342.8571
5P 4,3521 4,88 3.4421 6.7778 4.8 7.2 4,6889 4 3.8111 3.9
w/c Ratio 8.5263 B.626 @.5411 @8.4178 B8.475 8.41 2.60844 8.5 8.5511 @8.5314
Age 14,8282 28 5.9474 5.2222 28 28 5.2222 4,7143 28 28
s 181.8831 114,258 227.4895 29,2333 129,95 4.7 53.3811 224.,9714 288.5222 441.9143
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Table S. 5: Main factors that affect Concrete Compressive Strength by K-Mean Algorithm in Salfit

Governorate.
Name K-mean
Number of Clusters Main factors that affect Concrete Compressive Strength
K=3 Coarse Aggregates, W/C Ratio , age

Coarse Aggregates, W/C Ratio , age
Coarse Aggregates, W/C Ratio , age
Coarse Aggregates ,water , cement , W/C Ratio , age

"
L-HENNIC)

K
K
K

Table S. 6: Summary of the main parameters that affect Compressive Strength of Concrete using the three
algorithms in Salfit Governorate.

Name EM KSOM K-Means Intersection
Main parameters Coarse
WI/C Ratio, SP, | w/c Ratio, SP, | Aggregates, W/C w/c Ratio,
age Age Ratio, age Age

4.1.6 Detecting Main Factors that Affect CCS in Hebron Governorate:

The dataset of Hebron Governorate is first selected and then implemented these
algorithms on the Hebron dataset. In general, the dataset consists of 7 input parameters
(Fine Aggregates, Coarse Aggregates, Superplasticizer, Water, Cement, W/C ratio, and
Age) which were examined against Concrete Compressive Strength (CCS) in Hebron
Governorate using these algorithms (EM, KSOM, and K-Means). This section
compares and evaluates these algorithms using Hebron Governorate dataset to
investigate the main or primary factors that affect the concrete mix. Table H. 1 shows
the main results of EM algorithms. To extract these results, different datasets were used
with different numbers of clusters (k=3, 5, 7, and 9) as represented in Table H. 1. After
applying EM on the Hebron Governorate dataset many times with different numbers of
clusters and the main parameters were detected on their standard deviation values.
Table H. 2 represents the main factors that affect Concrete Compressive Strength and

their standard deviation values.
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Table H. 1: Main factors that affect Concrete Compressive Strength in Hebron Governorate by EM
Algorithm.

Number of Clusters Main factors that affect Concrete Compressive Strength
in Hebron Governorate By EM Algorithm
K=3 Fine Aggregates, W/C Ratio , SP, age
K=5 Fine Aggregates, W/C Ratio , SP, age
K=7 Fine Aggregates, W/C Ratio , SP, age
K=9 Coarse Aggregates ,Cement , W/C Ratio , SP, age

KSOM algorithm is also used to detect the main factors that affect Hebron Concrete
Compressive Strength. After applying KSOM on Hebron Governorate Dataset many
times with different numbers of clusters and the main parameters were detected on
their standard deviation values. Table H. 3 represents the main factors that affect
concrete compressive strength and these parameters (Fine Aggregates, SP, w/c Ratio

and Age) as an intersection between clusters were obtained by KSOM

Table H. 2: List of the main factors with their standard deviation in Hebron Governorate.

Standard Deviation Main factors that affect Concrete
Number of Clusters :
Compressive Strength

0.0003 Fine Aggregates
K=3 1.1351 SP

0.0335 WI/C ratio

1.0155 Age

0.0003 Fine Aggregates
K=5 1.133 SP

0.0335 WI/C ratio

0.4565 Age

0.0001 Fine Aggregates
K=7 1.567 SP

0.438 WI/C ratio

0.4994 age

0.0001 Coarse Aggregates

0 Fine Aggregates

K=9 0.0002 Cement

1.566 SP

0.451 WI/C ratio

0.4774 age
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Table H. 3: Main factors that affect Concrete Compressive Strength by KSOM algorithm In Hebron
Governorate.

Name KSOM

Main factors that affect Concrete Compressive Strength
by KSOM algorithm In Hebron Governorate.

Number of Clusters

k=3 Fine Aggregates, W/C Ratio , SP, age
K=5 Fine Aggregates, W/C Ratio , SP, age
K=7 Fine Aggregates, W/C Ratio , SP, age
K=9 Fine Aggregates, W/C Ratio , SP, age

Table H. 5 represents the main factors that affect Concrete Compressive Strength
which were obtained from this K-mean algorithm and K-mean is used to detect the
main factors that affect Concrete Compressive Strength after applying K-Means on the
dataset of Hebron governorate many times with different numbers of clusters as shown
in Table H. 4 with their values. These factors (Coarse Aggregates, Fine Aggregates,
WI/C ratio, and Age) as an intersection between clusters were obtained from this
algorithm. K-Mean algorithm produces these parameters (Coarse Aggregates, Fine
Aggregates, W/C ratio, and Age) and according to the results obtained from EM
algorithms (Fine Aggregates, W/C Ratio, SP and Age) and KSOM (Fine Aggregates,
SP, w/c Ratio and Age). K-Mean, KSOM, and EM show a distinguishing factor which
is the (Coarse Aggregates and SP). Table H. 6 represents the comparison between the
three algorithms to detect the main factors that affect the Compressive Strength of
Concrete. It is clear that the three algorithms show intersection and provide different
results and the analysis concludes that these factors (Fine Aggregates, W/C Ratio, and
Age) are common factors and they are the three primary components that affect

Concrete Compressive Strength.
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Table H. 4: Results for K-Means algorithm based on some different number of clusters (K=3, 5, 7 and 9)
in Hebron Governorate.

number Result for K=3,5,7,9
of
clusters
K:3 Final cluster centroids: Tuster
Attribute Full Data “ N ;; i 2
(o9.8) (76.8) (1@.8) (13.@)
Coarse agg 1167.5253 1147.1853 1235 1235
Fine Agpegate Bl .9697 B1e 58 548
Wataer 155 . 7374 161 ..9474 135 15 . 38346
Cement 324 .7475 347 .3584 258 258
sSP 1.1273 1.1789 1 &.9231
wc Ratio 2.4856 2.45688 a2.54 2.5415
Age 13 .46465 12.9737 25 5.1538
Cs 245 .3929 259.4579 273 .45 149 .2
K:5 Final cluster centroids:
Cluster#
Attribute Full Data a8 1 2 3 4
(oo.8) (6.8) (12.8) (13.8) (36.8) (3a.8)
Coarse agg 1167.5253 1175 1235 1235 1189.4444 115@.2941
Fine Aggegate 516.9697 618 548 618 548 618
Water 155.7374 17e 135 135.3846 153.5859 169.8558
Cement 324, 7475 68 258 258 331.9444 354.4118
=P 1.1273 3.2 1 @.9231 1.9556 e
w/c Ratioc @.4856 B.42 B.54 @.5415 &.4961 @.4883
Age 13,4646 = 28 5.1538 15.3333 11.8824
cs 246. 3929 228 273.45 149.2 276.1444 247.3412
K=7
Final cluster centroids:
Clusters
Attribute Full Data ] 1 b 3 4 5 B
(99.8) (6.8) (5.8) (5.8) (36.8) (34.8) (7.8) (6.8)
Coarse agg 1167.5253 1175 1235 1235 11394444 1158,2941 1235 1235
Fine Aggegate 616.9697 61@ 648 B48 618 6la 648 646
Water 155.7374 178 138 14@ 153.8889 169.08583 148 138
Cement 324.7475 486 258 258 331.9444 354.4113 258 256
5P 1.1273 3.2 1.1 ] 1.9556 a a 2
w/c Ratio @.4856 @.42 @.52 @.56 @.4661 @.4803 B.56 @.52
Age 13,4646 5 28 28 15,3333 11.3824 5.2857 5
Cs 246,3929 223 283.46 263,44 276,1444  247.3412 146,5143 152.3333
K=9 | |
Final cluster centroids:
Clusters
Attribute Full Data '] 1 2 3 4 5 6 7 8
(99.6)  (6.8)  (5.8)  (5.8) (21.8) (18.8)  (3.0)  (6.8) (31.0)  (4.0)
Coarse agg 1167.5253 1175 1235 1235 1142.519 1163.8889 1235 1235 1135 1235
Fine Aggegate 616.9697 610 648 (40 618 Gl 648 548 (10 648
Water 155.7374 178 138 1468 157.5238 176.6667 148 138 154.8387 148
Cement 324.7475 480 258 2568 338.8952 386.1111 250 258 320.9677 250
5p 1.1273 3.2 1.3612 ] 1.6381 ] ] 2 1.1613 ]
w/c Ratio #.4856 9.42 8.52 B.56 #4686 #.4583 B.56 #.52 @.4845 B.56
Age 13,4646 5 28 28 28 12,1667 3 5 4,8065 7
s 246,3929 228 283.46 263.44 362 278.9556 1@6.7R67 152.3333 1B4.7613 176.325
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Table H. 5: Main factors that affect Concrete Compressive Strength by K-Mean Algorithm in Hebron

Governorate.
Name K-mean
Number of Clusters Main factors that affect Concrete Compressive Strength
K=3 Coarse Aggregates, Fine Aggregates , W/C ratio , Age

Coarse Aggregates, Fine Aggregates , W/C ratio , Age ,SP
Coarse Aggregates, Fine Aggregates , W/C ratio , Age
Coarse Aggregates, Fine Aggregates , W/C ratio , Age

"
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Table H. 6: Summary of the main parameters that affect Compressive Strength of concrete using the three
algorithms in Hebron Governorate.

Name EM KSOM K-Means Intersection
Main parameters Coarse Fine

Fine Aggregates | Fine Aggregates, | Aggregates, Fine Aggregates

, W/C Ratio, SP SP ,w/c Ratio Aggregates, W/C W/C Ratio '

, Age ,Age ratio, Age Age ’

4.1.7 Detecting Main Factors that Affect CCS in Nablus Governorate:

The Nablus Governorate is first selected, and then these algorithms were implemented
on the Nablus dataset, In general, the dataset consists of 7 input parameters (Fine
Aggregates, Coarse Aggregates, Superplasticizer, Water, Cement, W/C ratio, and Age)
were examined against Concrete Compressive Strength (CCS) in Nablus Governorate

using these algorithms (EM, KSOM, and K-Means). T

This section compares and evaluates these algorithms using Nablus governorate dataset
to investigate the main or primary factors that affect the concrete mix. Table N. 1
shows the main results of EM algorithms. To extract these results, different datasets
were used with different numbers of clusters (k=3, 5, 7, and 9) as represented in Table
N. 1. After applying EM on the Nablus Dataset many times with different numbers of

clusters, the main parameters were detected on their standard deviation values and
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Table N. 2 represents the main factors that affect concrete compressive strength and

their standard deviation values.

Table N. 1: Main factors that affect CSS Strength in Nablus Governorate by EM Algorithm.

Number of Clusters Main factors that affect Concrete Compressive Strength
in Nablus By EM Algorithm
K=3 Fine Aggregates, Age, W/C Ratio, SP
K=5 Age, W/C Ratio , SP
_ Fine Aggregates, Coarse Aggregates, Cement, Water, W/C
K=7 .
Ratio, SP, Age
K=9 Fine Aggregates, Water, W/C Ratio , SP

Table N. 2: List of the main factors with their standard deviation in Nablus Governorate.

Standard Deviation Main factors that affect Concrete
Number of Clusters X
Compressive Strength
0 Fine Aggregates
K=3 1.38 SP
0.0229 WI/C ratio
0.0849 Age
1.3868 SP
K=5 0.0229 WI/C ratio
0.2444 Age
0.0802 Fine Aggregates
0.1604 Coarse Aggregates,
0.401 Cement
K=7 0.1069 Water
0.0032 SP
0.0003 WI/C ratio
0.0118 Age
0.00879 Fine Aggregates,
K=9 0.025 Water
0.008 SP
0.0001 W/C Ratio

Table N. 3 represents the main factors that affect Concrete Compressive Strength and
these parameters (Fine Aggregates, SP, and w/c Ratio) as an intersection between

clusters were obtained from this KSOM.
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Table N. 3: Main factors that affect Concrete Compressive Strength by KSOM algorithm In Nablus
Governorate.
Name KSOM
Main factors that affect Concrete Compressive Strength
by KSOM algorithm In Nablus Governorate.

Number of Clusters

k=3 Fine Aggregates, SP ,w/c Ratio
K=5 Fine Aggregates, SP ,w/c Ratio
K=7 Fine Aggregates, SP ,w/c Ratio
K=9 Fine Aggregates, SP ,w/c Ratio

K-mean algorithm is also used to detect the main factors that affect Concrete Compressive
Strength, after applying K-Means on the dataset of Hebron governorate many times with different
numbers of clusters as shown in table K. 4.

Table N. 5 represents the main factors that affect Concrete Compressive Strength and these
parameters (water, Cement, SP, W/C ratio, and age) as an intersection between clusters were

obtained from this K- mean.

Table N. 6 represents the comparison between the three algorithms to detect the main
factors that affect the Compressive Strength of Concrete. K-Mean algorithm produces
these parameters (W/C ratio, Cement, SP, and age) and according to the results
obtained from EM algorithms (Fine Aggregates, Water, W/C Ratio and SP) and KSOM
(Fine Aggregates, SP and W/C Ratio). This leads K-Mean, KSOM, and EM to show a
distinguishing factor which is the (Fine Aggregates, Cement, and age). It is clear that
the three algorithms show intersection and provide different results and the analysis
concludes that these factors (SP and W/C Ratio) are common and they are the two

primary components that affect concrete compressive strength.
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Table N. 4: Results for K-Means algorithm based on some different number of clusters (K=3, 5, 7 and 9)
in Nablus Governorate.

Numbe | Result for K=3,5,7 9
r of
cluster
S
I<:3 Final cluster centroids:
Cluster#
Attribute Full Data =] 1 2
(S54.8) (28.8) (2z2.2) (12.8)
Coarse agg 1188.3333 1157 1235 1155
Fine Aggegate 622.2222 &6l1a 648 a6l1a
Water 152 .6667 166.6 134 .5455 167 .1667
Cement 325 377.5 258 375
sSP 1.4815 1.89 1.&9a9 1.5167
w/c Ratio 8.4811 8.4 ®.5382 8.495
Age 15.9815 =1 14.5 28
Cs 247 .4389 2131 .19 281 .1364 392.9667
K=5 Final cluster centroids:
Clusterdt
Attribute Full Data 2 1 2 3 4
(54.8) (9.8) (11.8) (12.8) (12.8) (18.8)
Coarse agg 1188.3333 1175 1142.2727 1155 1235 1235
Fine Aggegate B22.2222 6l16& 6l1a Ble 548 548
Water 153 .6667 178 163.8182 167 .1667 138 146
Cement 325 4E@E 359.8989 375 25a 258
SP 1.4815 3.2 B8.8182 1.5167 2 a8
w/c Ratio 28.4811 a8.42 8.4564 B8.485 8.52 8.56
Age 13.9815 4. 7778 5.1818 28 14.75 14.2
cs 247 .43389 222.2444 22,1455 392.9667 289 ,.95383 19&.55
K=7 CIOSCETH
- Attribute Full Data ] 1 2 3 4 5 6
(54.8) (9.8) (11.@) (4.8) (5.2) (4.8 (13.8) (8.8)
Coarse agg 1188.3333 1175 1149,5455 1175 1235 1235 1235 1135
Fine Aggegate 622.2222 618 618 618 648 648 648 618
Water 153.6667 1786 172.3636 176 138 148 134.6154 154
Cement 325 4@@ 368.1818 488 258 258 258 358
5P 1.4815 3. 3.2 ] 2 ] 1.8769 1.8
w/c Ratio B.43511 @.42 @.4591 B.42 @.52 @.56 B.5385 @.44
Age 13.9815 4,.7778 15.8182 23 28 28 5.1538 13.375
Cs 247 .4889 222.2444 285.3636 423,875 283.46 263.55 158.2692 263.4875
K=9 Final cluster centroids:
Cluster#
Attribute Full Data ] 1 2 3 4 5 6 7 3
(54.8) (9.8) (6.2) (4.8) {5.8) (4.8) (6.2) (5.8) (8.2) (7.2)
Coarse agg 1188.3333 1175 1148.3333 1175 1235 1235 1235 1135 1145 1235
Fine Aggegate 622.2222 618 6168 616 48 648 648 616 616 648
Water 153.6667 178 172 178 138 148 148 154 165.75 138
Cement 325 438 366.6667 468 2568 258 258 358 362.5 258
5P 1.4815 3.2 a 3.2 2 ] a 1.8 8.675 2
w/c Ratio 8.4811 8.42 8.47 8.49 8.52 @.56 8.56 8.44 8.4575 @.52
Age 13,9815 4.7778 G.BBE7 28 23 28 5 4.6 23 5.2857
s 247.4889 222.2444 289.7833  423.875 283.46 263.55 141.8833 192.98 377.9125 157.4571
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Table N. 5: Main factors that affect CCS by K-Mean Algorithm in Nablus Governorate.

Name K-mean
Number of Clusters Main factors that affect Concrete Compressive Strength
K=3 water , Cement, wi/c ratio ,SP , age
K=5 water , Cement, w/c ratio ,SP , age
K=7 water , Cement, wi/c ratio, SP , age
K=9 water , Cement, w/c ratio , SP , age

Table N. 6: Summary of the main parameters that affect Compressive Strength of concrete using the three
algorithms in Nablus Governorate.

Name EM KSOM K-Means Intersection
Main parameters | Fine Aggregates Fine Aqarecates WI/C ratio
, Water, W/C ggregates, Cement, ,Water | SP ,w/c Ratio
. SP ,w/c Ratio
Ratio , SP ,SP , age

4.1.8 Detecting main Factors that CCS in Tulkram Governorate:

The dataset of Tulkram Governorate is first selected, and then these algorithms were
implemented on the Tulkarem dataset, In general, the dataset consists of 7 input
parameters (Fine Aggregates, Coarse Aggregates, Superplasticizer, Water, Cement,
WI/C ratio, and Age) were examined against Concrete Compressive Strength (CCS) in
Tulkarm Governorate using these algorithms (EM, KSOM, and K-Means). This section
compares and evaluates these algorithms wusing Tulkram Governorate dataset to
investigate the main or primary factors that affect the concrete mix. Table K. 1 shows
the main results of EM algorithms and to extract these results, different datasets were
used with different numbers of clusters (k=3, 5, 7, and 9) as represented in Table K. 1.
After applying EM on the Tulkarem Dataset many times with different numbers of
clusters and the main parameters were detected on their standard deviation values.
Table K. 2 represents the main factors that affect Concrete Compressive Strength and

their standard deviation values.
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Table K. 1: Main factors that affect Concrete Compressive Strength in Tulkram Governorate by EM
Algorithm.

Number of Clusters Main factors that affect Concrete Compressive Strength
in Tulkram By EM Algorithm
K=3 w/c Ratio, SP, Age
K=5 w/c Ratio, SP, Age
K=7 wi/c Ratio, SP, Age
K=9 wi/c Ratio, SP, Age

Table K. 2: List of the main factors with their standard deviation in Tulkram Governorate.

Standard Deviation Main factors that affect Concrete
Number of Clusters -
Compressive Strength
1.2709 SP
K=3 0.0498 WI/C ratio
2.111 age
1.5775 SP
K=5 0.0416 WI/C ratio
2.271 age
1.5775 SP
K=7 0.0417 WI/C ratio
2.2204 age
1.7913 SP
K=9 0.0348 WI/C ratio
0.0239 age

Table K. 3 represents the main factors that affect Concrete Compressive Strength and
these parameters (W/C Ratio, SP, and age) as an intersection between clusters were

obtained from this algorithm by using standard devotion values.

Table K. 3: Main factors that affect CCS by KSOM algorithm In Tulkram Governorate.

Name KSOM
Main factors that affect Concrete Compressive
Number of Clusters Strength by KSOM algorithm In Tulkram
Governorate.

k=3 wi/c Ratio, SP, Age

K=5 wi/c Ratio, SP, Age

K=7 wi/c Ratio, SP, Age

K=9 wi/c Ratio, SP, Age

K-mean algorithm is also used to detect the main factors that affect Concrete

Compressive Strength, after applying K-Means on the dataset of Hebron governorate
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many times with different numbers of clusters as shown in Table K. 4 with their values.
Table K. 5 represents the main factors that affect CSS, and these parameters (Coarse

Aggregates, fine Aggregates, water, cement, and SP) as an intersection between

clusters were obtained from this algorithm.

Table K. 4: Results for K-Means algorithm based on some different number of clusters (K=3, 5, 7 and 9)

in Tulkram Governorate.

# of | Result for K=3,5,7,9
cluster
K:3 Final cluster centroids:
Clusters#
Attribute Full Data
Coarse agg 1227 .65985 1178.5714 1351
Fine Aggegate B522.7381 554.81435 497 .1429
Water 159 .4524 A73.5714 1465.75 196.1429
Cement 312.1429 42 .8571 278.2145 357 .1429
sSP 2.8857 3.2429 2.8379 1
wsec Ratio &.5262 a8.53 &.55435 28.55
Age 11.7819 11.8571 11.1871 14.2857
Cs 158.354 279.5714 125.1811 159 .8286
F(:5 Final cluster centroids:
Clusters#
attribute Full Data <] 1 2 3 4
(42.@) (2.@) (24.8) (3.@) (12.@) (1.@)
Coarse agg 1227 .6985 1266 1282.275 1355 1232.8333 1327
Fine Aggegate 522.781 558 635.575 492 631.25 S28
Water 159.4524 193 147.6825 194.6667 164.92167 25
Cement 312.1429 458 285.8333 356.6667 325 358
SP 2.8857 3.7 2.1533 1.1667 2.815 =]
w/c Ratio 8.5262 28.53 8.5258 a.5487 8.52a83 a8.57
Age 11.7619 15.5 5.5 3 28 7
cs 1558.354 2453.5 135.8146 9&.4267 288.8867 222
K:7 Final cluster centroids:
Cluster#
Attribute Full Data & 1 2 E] 4 5 5
(42.8) (2.2) (13.@) (3.8) (12.8) (1.@) (9.@) (2.8)
Coarse agg 1227 .6985 1286 1212.4923 1355 1232.8333 1327 1235.3556 287
Fine Aggegate 522,781 658 587.2769 492 531.25 528 658.8 893
Water 159.4524 193 147.8154 194.6667 164.9167 285 142.7778 169.5
Cement 312.1429 458 386.1538 356.6667 325 368 258.8889 275
SP 2.8857 3.7 1.37a8 1.1667 2.815 =] 2.2511 6.8
w/c Ratio 8.5262 .51 B.4862 8.5467 8.5283 8.57 B.5633 8.6815
Age 11.7619 28 5.46815 3 5 7 5.6667 5
Cs 158.354 248.5 17e.138s8 9@.4267 288.8867 222 79.97586 164.@35
K=9 Final cluster centroids:
Cluster#
Attribute Full Data 8 1 2 3 4 H 6 7 8
(42.@) (6.8) (3.@) (12.8) (1.@) (2.@) )
Coarse agg 1227.6985 1266 1382.9 1355 1232.8333 1327 1327 987 1135  1162.
Fine Aggegate 622.781 658 56B8.7667 492 631.25 528 528 893 618 749.84
Water 159.4524 193 139.8333 194.6667 164.9167 2es 133 169.5 154,2857 158.6
Cement 312.1429 458 313.3333 356.6667 325 368 258 275 sae 266
SpP 2.8657 3.7 2.37 1.1667 2.815 =] 2 6.8 8.5143 2.452
w/c Ratio 8.5262 8.53 @.4533 8.5467 8.5288 8.57 8.56 8.615 8.5143 8.566
Age 11.7619 28 5.6667 3 5 7 5 5 5.2857 6.2
cs 158.354 248.5 155.2333  98.4267 288.8867 222 138.5  164.835 182.9 33.156
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Table K. 5: Main factors that affect Concrete Compressive Strength by K-Mean Algorithm in Tulkram

Governorate.
Name K-mean
Number of Clusters Main factors that affect Concrete Compressive Strength
K=3 coarse Aggregates, water , cement ,wi/c ratio , SP, Age
K=5 coarse Aggregates, fine Aggregates, water , w/c ratio , cement, SP , Age
K=7 coarse Aggregates, fine Aggregates, water , w/c ratio, cement , SP , Age
K=9 coarse Aggregates, fine Aggregates, water , w/c ratio , cement , SP, Age

Table K. 6: Summary of the main parameters that affect Compressive Strength of concrete using the three
algorithms in Tulkram Governorate.

Name EM KSOM K-Means Intersection
Main parameters Coarse
SP, W/C Ratio, | w/c Ratio, SP, | Aggregates, water | wi/c Ratio,
Age Age ,SP, w/c ratio SP
cement , Age

Table K. 6 represents the comparison between the three algorithms to detect the main factors that
affect Compressive Strength of concrete, K-Mean algorithm produces these parameters (W/C
ratio, Cement, SP, and age) and according to the results obtained from EM algorithms (SP, W/C
Ratio and Age), and KSOM (SP, W/C Ratio and Age) This leads K-Mean EM to show a
distinguishing factor which is the (Coarse Aggregates). It is clear that the three algorithms show
intersection and provide different results, and the analysis concludes that these factors (SP, W/C
Ratio, and Age) are common factors and they are the three primary components that affect

concrete compressive strength.

Table of Palestine Governorates Summary 1 represents the summary of the comparison between
the three algorithms to detect the main factors that affect compressive strength of concrete on each
governorate of Palestinian Governorates which are the K-Mean algorithm, EM algorithm, and

KSOM. It is clear that the three algorithms show intersection and provide different results and the



analysis concludes that different factors are common factors that affect concrete compressive

strength on each Governorate.
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Table of Palestine Governorates Summary 1: Table Palestinian Governorates Summary: Summary of
main factors that affect each governorate of Palestinian Governorates.

Name EM K-mean KSOM
Similar items Similar items Similar items Interse(_:tlon of
algorithms
Coarse
. Coarse Aggregates , .
Jenin SP, V\XCeRatlo, Aggregates, Fine | Fine Aggregates, SP, V\XCeratlo ’
9 Aggregates, SP, SP ,w/c Ratio , 9
wi/c ratio , Age Age
Coarse
. Aggregates, . .
Ramallah W/C R:tlé‘) , SP, water , cement, w/c RaAtlc;, SP, | wlc R?Atl%’ SP,
g SP, W/C ratio, 9 9
Age
Aogrestes Coarse
Tubas WIC Ratio, SP | water, SP . AGIreQaes , | e patio | SP
L Wi/C Fine Aggregates,
cement SP ,w/c Ratio
ratio, age
. Coarse .
Salfit wic R:t': 'SPy Aggregates, , wie RZ“C;’ SP, wi/c Ratio, Age
g W/C Ratio , age 9
Coarse
Fine Aggregates | Aggregates, Fine | Fine Aggregates, Fine
Hebron , W/C Ratio, SP Aggregates |, SP ,w/c Ratio Aggregates, w/c
, Age WI/C ratio , Age JAge Ratio ,Age
Fine Aggregates WI/C ratio, .
Nablus , Water, W/C Cement, ,Water Fine Aggrega_tes, SP ,w/c Ratio
. SP ,w/c Ratio
Ratio , SP ,SP , age
Coarse
SP, W/C Ratio , Aggregates, w/c Ratio, SP, .
Tulkarem Age water .SP. wic Age w/c Ratio, SP
ratio , cement
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4.2 Classification Results

In this section and from results, it was discussed to make a classification for the
datasets that were collected from Palestinian governorates laboratories for all types of
concrete like B200, B250, B300, B350, and B400. These datasets were applied to the
classification techniques like Multilayer Perceptron Neural Networks (MLPNNS),
Linear Support Vector Machine (SVM), and Ensemble algorithm (ES). The results
show the accuracy for each type of concrete by using these techniques. Table 4.2.1
represents the summary of results obtained from these techniques and the results

showed that MLPNNs accuracy is more accurate than other techniques for each type of

concrete.
Table 4.2. 1: Accuracy Results for Classification Models.
Type / Algorithm Neural Networks Linear support Ensemble
Accuracy vector machine Algorithm Accuracy
(SVM) Accuracy
B200 93.5% 80.4% 90.2%
B250 90.0% 66.5% 75.5%
B300 93.3% 68.3% 79.2%
B350 90.6% 83.3% 85.6%
B400 90.0% 80.6% 78.6%

Table 4.2.2 shows that the number of Neuron of Neural Networks has the best accuracy for each
type which is classified in this table below by using Neural Networks Technique and the ranges of
neurons for each type was between [2-20].

Figure C1 represents the Chart of Accuracy Results for Classification Techniques, the
results showed that MLPNNs accuracy is more accurate than SVM and ensemble for

each type of concrete.
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Chart of Classification Models Accuracy Results.

B200 B250 B300 B350 B400

100
8
6
4
2

o O O O

B MLPNNs ®SVM ® Ensemble

Figure C1: Chart of Accuracy Results for Classification Models.

Table 4.2. 2: Summary Accuracy Results of MLPNNSs.

Type / Algorithm MLPNNs Accuracy Number of Neurons
B200 93.5% 4,8,10
B250 90.0% 18
B300 93.3% 10
B350 90.6% 18
B400 90.0% 20

Summary of Neural Networks Accuracy Results.

94
93
92
91

90

88
4,8,10 18 10 18 20

mB200 mB250 mB300 mB350 mB400

Figure C2: Chart of Summary Accuracy Results of MLPNNs for each type of concrete based on the best

number of neurons.

Figure C2 shows that the number of neurons of MLPNNs was used for each type of concrete.

Table 4.2.3 represents that the range of the number of neurons was used for B200 concrete which
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was classified in this table below by using the MLPNNs technique, and this table below shows
some parameters that can be obtained from Confusion Matrix based on (TP, TN, FP, and FN).
These parameters were Sensitivity, Specificity, Precision, and Negative Prediction. The best

accuracy was 93.5% at N = 4.

Table 4.2.4 represents the range of MLPNNSs Neurons used for B250 concrete which was classified
in this table below by using the MLPNNSs Technique. The best accuracy was 90.0% at N = 18 and
it shows some parameters that can be obtained from Confusion Matrix based on (TP, TN, FP, and

FN). These parameters were Sensitivity, Specificity, Precision, and Negative Prediction.

Table 4.2. 3: B200 MLPNNs Accuracy.

MLPNNs Accuracy

Accuracy 93.5%

T
U

N Training | Testing | TP TN | FN | Sensitivity | Specificity | Precision | Negative
Accuracy | Accuracy Prediction

2 72.5% 774% | 12| 5 | 12| 2 85.7% 70.6% 70.6% 85.7%
4 90.8% 935% (19| 0 | 10| 2 90.5% 100.0% 100.0% 83.3%
6 95.1% 903% |18| 2 |10 | 1 94.7% 83.3% 90.0% 90.9%
8 89.4% 935% |16 1 |13 | 1 94.1% 92.9% 94.1% 92.9%
10 90.1% 935% 16| 0 | 13| 2 88.9% 100.0% 100.0% 86.7%
12 88.0% 839% |13 | 0 | 13 |5 72.2% 100.0% 100.0% 72.2%
14 89.4% 871% |15 2 |12 | 2 88.2% 85.7% 88.2% 85.7%
16 90.1% 871% |16 | 2 | 11 |2 88.9% 84.6% 88.9% 84.6%
18 93.0% 871% |13 | 2 | 14| 2 86.7% 87.5% 86.7% 87.5%
20 92.3% 903% [12| 3 |16 | O 100.0% 84.2% 80.0% 100.0%

Table 4.2.5 represents the range of Neural Networks Neuron has been used for B300 concrete
which was classified in this table below by using the Neural Networks technique. The table below

shows some parameters that can be obtained from Confusion Matrix based on (TP, TN, FP, and
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FN). These parameters were Sensitivity, Specificity, Precision, and Negative Prediction and the

best accuracy was 93.3% at N = 10.

Table 4.2. 4: B250 MLPNNs Accuracy.

MLPNNSs Accuracy
Accuracy 90.0%

N Training Testing | TP | FP | TN | FN | Sensitivity | Specificity | Precision | Negative

Accuracy | Accuracy Prediction
2 72.9% 800% |15| 4 | 9 | 2 88.2% 69.2% 78.9% 81.8%
4 55.7% 467% |10 10| 4 | © 62.5% 28.5% 50.0% 40.0%
6 80.7% 700% |12 6 | 9 | 3 80.0% 60.0% 66.7% 75.0%
8 79.3% 700% | 11| 4 |10 | 5 68.8% 71.4% 73.4% 66.7%
10 62.1% 500% |13 |8 | 2 | 7 65.0% 20.0% 61.9% 22.2%
12 67.1% 66.7% | 12| 6 | 8 | 4 75.0% 57.1% 66.7% 66.7%
14 75.7% 800% |14 6 |10 ] O 100.0% 62.5% 70.0% 100%
16 79.3% 733% | 11| 0 |11 | 8 57.9% 100.0% 100.0% 57.9%
18 78.6% 90.0% (17| 3 |10 | O 100.0% 76.9% 85.0% 100.0%
20 67.1% 70.0% 911 1]12]| 8 52.9% 92.3% 90.0% 60.0%

Table 4.2. 5: B300 MLPNNs Accuracy.
MLPNNs Accuracy
Accuracy 93.3%

N Training Testing | TP | FP | TN | FN | Sensitivity | Specificity | Precision | Negative

Accuracy | Accuracy Prediction
2 68.1% 60.0% 512 113]10 33.4% 86.7% 71.4% 56.5%
4 74.5% 70.0% 8 |3 |13]| 6 57.1% 81.3% 72.7% 68.4%
6 76.6% 80.0% |14| 2 |10 | 4 77.8% 83.3% 87.5% 71.4%
8 73.8% 700% | 10| 5 |11 4 71.4% 68.8% 66.7 73.3%
10 97.2% 933% |17 1 |11 | 1 94.4% 91.6% 94.4% 91.7%
12 76.6% 66.7% 8 | 512|565 61.5% 70.6% 61.5% 70.6%
14 80.1% 66.7% 8 3|12 | 7 53.3% 80.0% 72.7% 63.2%
16 77.3% 66.7% | 10| 1 |10 | 9 52.6% 90.9% 90.9% 52.6%
18 73.8% 70.0% |11 |6 |10 | 3 78.6% 62.5% 64.7% 76.9%
20 78.0% 733% | 11| 5 |11 ] 3 78.6% 68.8% 68.8% 78.6%




Table 4.2. 6: B350 MLPNNs Accuracy.
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MLPNNs Accuracy
Accuracy 90.6%

N Training Testing | TP | FP | TN | FN | Sensitivity | Specificity | Precision | Negative

Accuracy | Accuracy Prediction
2 87.5% 781% | 10| 4 | 15| 3 76.9% 78.9% 71.4% 83.3%
4 86.2% 750% | 10| 0 |14 | 8 55.6% 100.0% 100.0% 63.6%
6 86.8% 875% |17 |1 |11 | 3 85.0% 91.7% 94.4% 78.6%
8 86.8% 781% | 10| 2 | 15| 5 66.7% 88.2% 83.3% 75.0%
10 87.5% 875% | 15| 1 |13 | 3 83.3% 92.9% 93.8% 81.3%
12 85.5% 813% |11| 0 | 15| 6 64.7% 100.0% 100.0% 71.4%
14 76.3% 81.3% 710(19] 6 53.8% 100.0% 100.0% 76.0%
16 87.5% 875% | 11| 2 |17 | 2 84.6% 89.5% 84.6% 89.5%
18 85.5% 90.6% |18 | 1 |11 | 2 90.0% 91.7% 94.7% 85.0%
20 86.2% 844% | 13| 0 |14 | 5 72.2% 100.0% 100.0% 74.0%

Table 4.2.6 represents MLPNNs Neurons range that has been used for B350 concrete which shows
some parameters that can be obtained from Confusion Matrix based on (TP, TN, FP, and FN), like
Sensitivity, Specificity, Precision, and Negative Prediction and the best accuracy was 90.6% at N

=10.

Table 4.2.7 shows the range of MLPNNs Neurons which has been used for B400 concrete which
was classified in this table below by using MLPNNSs, the best accuracy was 90.0% at N = 20,
which shows some parameters that can be obtained from Confusion Matrix based on (TP, TN, FP,

and FN). These parameters were Sensitivity, Specificity, Precision, and Negative Prediction.

Table 4.2.8 represents the results of applying the Support Vector Machine Technique for each type
of concrete which was classified in this table below and this table below shows some parameters
that can be obtained from Confusion Matrix based on (TP, TN, FP, and FN). These parameters

were Sensitivity, Specificity, Precision, and Negative Prediction.



Table 4.2. 7: B400 MLPNNs Accuracy.
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MLPNNs Accuracy
Accuracy 90.0%
N Training Testing | TP | FP | TN | FN | Sensitivity | Specificity | Precision | Negative
Accuracy | Accuracy Prediction
2 67.4% 70.0% 9 (2|12 | 7 56.3% 85.7% 81.8% 63.2%
4 78.0% 83.3% (12| 4 |13 | 1 92.3% 76.5% 75.0% 92.9%
6 84.4% 733% | 11| 4 |11 | 4 73.3% 73.3% 73.3% 73.3%
8 83.7% 76.7% | 12| 5 11| 2 85.7% 68.8% 70.6% 84.6%
10 82.3% 86.7% | 13| 4 |13 ]| 0 100.0% 76.5% 76.5% 100.0%
12 85.1% 800% |12 |6 |12 | 0 100.0% 66.7% 66.7% 100.0%
14 84.4% 833% | 11| 4 |14 | 1 91.7% 77.8% 73.3% 93.3%
16 84.4% 800% |16 | 6 | 8 | O 100.0% 57.1% 72.7% 100.0%
18 84.4% 800% |17 | 4 | 7 | 2 89.5% 63.6% 81.0% 77.8%
20 81.6% 90.0% (19| 3| 8 | O 100.0% 72.7% 86.4% 100.0%
Table 4.2. 8: SVM for All Types of Concrete Accuracy.
SVM Accuracy

Type Accuracy | TP | FP | TN | FN | Sensitivity | Specificity | Precision | Negative Prediction
B200 80.4% | 103 |11 | 61 | 29 78.0% 84.7% 90.4% 67.8%

B250 66.5% | 61 |56 | 72 | 11 84.7% 56.3% 52.1% 86.8%

B300 68.3% | 61 |43 |77 |21 74.4% 64.2% 58.7% 78.6%

B350 833% |82 26|99 | 9 90.1% 79.2% 75.9% 91.7%

B400 80.6% | 90 |16 | 72 | 23 79.6% 81.8% 84.9% 75.8%

Table 4.2.9 represents the results of applying the Ensemble algorithm technique for each type of

concrete which was classified in this table below and shows some parameters that can be obtained

from accuracy. These parameters were Sensitivity, Specificity, Precision, and Negative Prediction.
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Table 4.2. 9: Ensemble for All Types of Concrete Accuracy.

Ensemble Accuracy

Type | Accuracy | TP | FP | TN | FN | Sensitivity | Specificity | Precision Negative Prediction
B200 90.2% | 102 (12| 82 | 8 92.7% 87.2% 89.5% 91.1%
B250 755% | 88 |29 | 63 | 20 81.5% 68.5% 75.2% 76.0%
B300 79.2% | 88 |16 | 72 | 26 77.2% 81.8% 84.6% 73.4%
B350 85.0% | 88 |20 | 96 | 12 88.0% 82.8% 81.5% 88.9%
B400 786% | 87 |19 | 71| 24 78.4% 78.9% 82.1% 75.0%

4.2.1 B200 Concrete Classification

MLPNNs technique was more accurate than the

and Ensemble algorithm (ES) in B200 concrete type.

In this Figure, B200 - 1, some experiments were made by changing the number of

neurons, and the results are more accurate than others when several neurons equal 4, 8,
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Figure B200 - 1: Confusion Matrix with B200 concreteby MLPNNswhen N=4.
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or 10. The results have obtained from these figures show the confusion matrix and
accuracy percentages training, validation, and testing, the percentages were 90.8%,
87.1%, and 93.5% respectively. These figures represent the accuracy was obtained for
the B200 concrete type when using the MLPNNs technique is more accurate than other
techniques. Finally, after some calculations from these parameters (TP, TN, FP, and
FN) in CM, it is obtained that sensitivity, specificity, and precision percentages equal
90.5%, 100.0%, and 100.0% in order. Figure B200-2, shows the receiver operating

characteristic (ROC) curve for B200 concrete type.
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Figure B200 - 2: ROC Curve with B200 concrete by MLPNNswhen N=4.

The whole line with blue color for all figures represents the ROC curve for training,
validations, and testing datasets. The ROC curve represents sensitivity versus (1-

Specificity) and for B200 concrete type the sensitivity is 90.5% and the Specificity is
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100%, these results are very well in network performance and good when the points are

in the upper- left corner.

B200 — SVM: In this Figure, B200 -3, which was a snapshot from classification
application in mat-lab and represents the Confusion matrix for B200 concrete dataset

that was taken from Palestinian Governorates produced by SVM.
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Figure B200 - 3: Confusion Matrix with Figure B200 - 4: ROC curve with B200
B200concrete by SVM technique. concreteby SVM technique.

In Figure B200 -3, it is shown that the percentage for testing accuracy was 80.4%.
These figures represent that the accuracy was obtained for the B200 concrete type
when using Support Vector Machine (SVM). Some calculations were obtained from
these results based on these parameters (TP, TN, FP, and TN). It is obtained that
sensitivity, specificity, and precision percentages equal 78.0%, 84.7%, and 90.4%

respectively.

In figure B200 -4, The whole line with blue color represents the ROC curve, the ROC
curve represents sensitivity versus (1-specificity), the sensitivity was 78.0% and the

specificity was 84.7% for B200 concrete type. These results are very well in network
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performance. A good result when points were in the upper- left corner area under curve

occupies 87% from this curve, and the current classifier is (0.32,0.90).

B200 Ensemble:

Figure B200 -5 represents the Confusion matrix for the B200 concrete type produced

by the Ensemble technique (ES).
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Figure B200 - 5: Confusion Matrix with B200 Figure B200 - 6: ROC curve with B200
concrete by ES technique. concreteby ES technique.

In this figure, B200-5, the percentage for testing accuracy was 90.2%. This figure
represents That the accuracy was obtained for the B200 concrete type when using the
Ensemble algorithm (ES) is more accurate than support Vector Machine (SVM). Some
calculations from these results are based on these parameters (TP, TN, FP, and TN). It
is obtained that sensitivity, specificity, and precision percentage equal 92.7%, 87.2%,

and 89.5 respectively.
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In this figure, B200 -6, the whole line with blue color represents the ROC curve which
represents sensitivity versus (1- Specificity). The sensitivity was 92.7% and the
specificity was 87.2% for B200 concrete type. These results are very well in network
performance and good results are when points were in the upper- left corner, AUC

occupies 91% from this curve, and the current classifier is (0.11,0.91).

4.2.2 B250 Concrete Classification

In the B250 concrete type, the MLPNNs are more accurate than the linear support
vector machine (SVM) and Ensemble algorithm(ES)when N=18 produce by using
MLPNNs techniques. In this Figure B250-1, some experiments were made by changing
the number of neurons, and the results are more accurate than others when the number
of neurons equals 18. From the confusion matrix, training, validation, and testing
percentages produced by the MLPNNs technique can be known. The percentage was

78.6%, 73.3%, and 90.0% respectively.

These figures show that the MLPNNSs technique is more accurate than other techniques
used for accuracy and some calculations obtained from these results. It is known that
the Sensitivity, Specificity, and Precision percentages equal 100.0%, 76.9%, and 85.0%
in order based on TP, TN, FP, and FN. In this Figure, B250-2 was taken from
classification application in mat-lab and represents the ROC curve for the B250

concrete type.
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The whole line with blue color for all figures represents the ROC curve for training,
validations, and testing datasets. The ROC curve is a representing sensitivity versus (1-
specificity); for B250 the sensitivity is 100% and the Specificity equals 76.9%. These
results are very well in network performance and good when the points are in the

upper-left corner.
B250-SVM:

In this figure, B250- 3, the snapshot from classification application in mat-lab

represents the Confusion matrix for B250 concrete type produced by SVM.
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Figure B250 - 3: Confusion Matrix with ~ Figure B250 - 4. ROC curve with B250 concrete
B250 concrete by SVM technique. by SVM technique.

In this figure, B250 -3, it is shown that the percentage for testing accuracy was 66.5%
produced by SVM. These figures represent that the accuracy was obtained for the B250
concrete type when using Support Vector Machine (SVM). After some calculations
from these results based on these parameters (TP, TN, FP, and TN), It is obtained that
Sensitivity, Specificity, and Precision percentages equal 84.7%, 56.3%, and 52.1%

respectively.
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In this figure, B250 -4, the whole line with blue color represents the ROC curve, which
represents sensitivity versus (1- Specificity). The sensitivity was 84.7% and the
specificity was 56.3% for the B250 concrete type. These results are not well in network
performance and a good result when points were in the upper- left corner; here area

under curve occupies 76% from this axis, and the current classifier is (0.48,0.87).

B250 Ensemble:

Figure B250\-5, which was taken from classification application by Ensemble

technique (ES), represents the Confusion matrix for B250 concrete type.
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Figure B250 - 5: Confusion Matrix with B250 Figure B250 - 6: ROC curve with B250
concrete by ES technique. concrete by ES technique.

Figure B250 -5 shows that the results from used Ensemble algorithm (ES) technique.
The percentage for testing accuracy was 75.5% and it also represents the accuracy
which was obtained for B250 concrete type when using Ensemble algorithm, (ES) is
more accurate than support Vector Machine (SVM). It can be obtained that sensitivity,

specificity, and precision percentage equal 81.5%, 68.5%, and 75.2% respectively
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depend on some calculations from these results based on these parameters (TP, TN, FP,

and TN).

Figure B250 -6, shows that the whole line with blue color represents the ROC curve,
for the B250 concrete type; the sensitivity was 81.5% and the specificity was 68.5%.
These results are not well in network performance and a good result when points were
in the upper- left corner; here urea under curve occupies 78% from this curve, and the

current classifier is (0.25,0.76).

4.2.3 B300 Concrete Classification

MLPNNs technique is more accurate than SVM and Ensemble techniques when
applying B300 concrete dataset on classification application in mat-lab. Figure B300-1
shows the confusion matrix concrete when N=10 produced by using MLPNNs

technique.

Figure B300-1 shows that changing the number of neurons is done to reach the best
accuracy results; the accuracy when N equals 10 is more accurate than others. The
results can be obtained from training, validation, and testing percentages from the
confusion matrix and these percentages were 97.2%, 96.7 %, and 93.3% respectively.
These figures represent that the MLPNNs technique is more accurate than other

techniques used for accuracy.

Based on some calculations from these results, it produces sensitivity, specificity, and
precision percentages, and these percentages equal 94.4%, 91.6%, and 94.6% in order.

Figure B300- 2 shows the ROC curve for B300 concrete type.
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The whole line with blue color for all figures represents the ROC curve for training,
validations, testing, and all datasets. The sensitivity is 94.4% and the specificity equals
91.6%. These results are very well in network performance for B300 concrete type and

a good result when the points are in the upper- left corner.

B300 SVM: this figure B300-3 is a snapshot from the classification application in mat-

lab and represents the Confusion matrix for the B300 type.
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Figure B300 - 3: Confusion Matrix with ~ Figure B300 - 4: ROC curve with B300 concrete
B300 concrete by SVM technique. by SVM technique.

Figure B300-3 shows that the percentage for testing accuracy was 68.3% which is
produced by SVM. These figures represent the accuracy for the B300 concrete type
when using the Support Vector Machine (SVM). It can be obtained that sensitivity,
specificity, and precision percentages equal 74.7%, 64.2%, and 58.7% respectively by

some calculations from these results based on these parameters (TP, TN, FP, and TN).

In this figure B300 -4, the whole line with blue color represents the ROC curve, which
represents sensitivity versus (1- Specificity); the sensitivity was 84.7% and the

specificity was 74.7% for B300 concrete type. These results are not good in network
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performance and good results are when points were in the upper-left corner; here area
under the curve occupies 75% of this curve, and the -current classifier equals

(0.41,0.79).

B300 Ensemble: Figure B300 — 5 was a shapshot from the classification application in

mat-lab and represents the Confusion matrix for the B300 type.
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Figure B300 - 5: Confusion Matrix with Figure B300 - 6: ROC curve with B300
B300 concrete by ES technique. concrete by ES technique.

Figure B300-5 shows That the percentage for testing accuracy was 79.2% that is
produced by ES technique, which is more accurate than SVM, some calculations from
these results based on these parameters (TP, TN, FP, and TN). Produce sensitivity,

specificity, and precision percentages equal 77.2%, 81.8%, 84.6% respectively.

In Figure B300-6, the whole line with blue color represents the ROC curve, the
sensitivity was 77.2% and the specificity was 81.8% for B300 concrete type. These

results are not good in network performance and good results when points were in the
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upper-left corner, here the area under curve occupies 77% from this axis, and the

current classifier is equals (0.27,0.85).

4.2.4 B350 Concrete Classification
MLPNNs technique is more accurate than SVM and ES techniques. Figure B350-1
represents the Confusion Matrix with B350 concrete when the Number of neurons

equals 18 is produced by the MLPNNSs technique.

Figure B350-1 shows MLPNNs technique when the number of neurons equals 18 is
more accurate than others. The results show the Confusion Matrix and percentages for
training, validation, and testing, and these percentages were 85.8%, 93.8%, and 90.6%
respectively. These figures represent the accuracy for the B350 concrete type when
using the MLPNNs technique and this technique is more accurate than other techniques
used for accuracy. Some calculations from these results produce Sensitivity,
Specificity, and Precision percentages which equal 90.0%, 91.7%, and 94.7% in order
based on TP, TN, FP, and FN. Figure B350-2 was taken from classification application
in mat-lab and represents the receiver operating characteristic (ROC) curve for the

B350 concrete type.

The whole line with blue color for all figures represents the ROC curve for training,
validations, testing datasets, and for B350 concrete type the sensitivity is 90.0% and
the Specificity equals 91.7%. These results are very well in network performance and
a good result is when the points are in the upper-left corner. B350 SVM: this figure,
B350-3 shows a snapshot from classification application in mat-lab and represents the

Confusion matrix for B350 concrete type.
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Figure B350-3 shows That the percentage for testing accuracy was 83.3% which is
produced by SVM. This figure represents the accuracy was obtained for the B350
concrete type when using Support Vector Machine (SVM). It is obtained that
Sensitivity, Specificity, and Precision percentages equal 90.1%, 79.2%, and 75.9%
respectively by some calculations from these results based on these parameters (TP,
TN, FP, and TN). In figure B350-4, the whole line with blue color represents the ROC
curve, the sensitivity was 90.1% and the specificity was 79.2% for the B350 concrete
type. These results are very well in network performance and good results when points
were in the upper- left corner; here area under curve occupies 87% from this axis, and
the current classifier equals  (0.24,0.92). B350-Ensemble: In figure B350-5 was a
snapshot from classification application in mat-lab and represents the Confusion matrix

for B350 concrete dataset was taken from Palestinian Governorates.
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Figure B350-5 shows that the percentage for testing accuracy was 85.0%. It also
represents That the best accuracy was obtained for the B350 concrete type when using
the Ensemble algorithm (ES) and it is more accurate than support Vector Machine
(SVM). Finally, after some calculations from these results based on these parameters
(TP, TN, FP, and TN), it can be obtained that sensitivity, specificity, and precision
percentage equal 88.0%, 82.8%, and 81.5% respectively. In figure B350-6, the whole
line with blue color represents the ROC curve, for B350 concrete type, the sensitivity
was 88.0% and the specificity was 82.8%. These results are good in network
performance, and a good result is when points were in the upper-left corner, here the
area under curve occupies 92% from this axis, and the current classifier equals

(0.19,0.89).
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4.2.5 B400 Concrete Classification

MLPNNs technique is more accurate than the linear support vector machine (SVM)
and Ensemble algorithm. Figure B400-1 shows the confusion matrix with B400
concrete when N=20 which is produced by MLPNNs technique. In figure B400-1,
some experiments were made by changing the number of neurons, and the results are
more accurate than others when several neurons equal 20. These results have been
obtained from the MLPNNs technique. It also shows the Confusion Matrix and
percentages for training, validation, and testing, the percentage was 81.6%, 90.0 %, and
90.0% respectively. These figures represent the accuracy for the B400 concrete type

when using the MLPNNSs technique which is more accurate than other techniques.
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Figure B400 - 1: Confusion Matrix with B400 concrete by MLPNNs when N=20.



117

From these results, it can be obtained that sensitivity, specificity, and precision
percentage equal 100.0%, 72.7%, and 86.4% in order. Figure B400-2 was a snapshot
from classification application in  mat-lab and represents the receiver operating
characteristic (ROC) curve for the B400 concrete dataset which was taken from
Palestinian Governorates. The whole line with blue color for all figures represents the
ROC curve for training, validations, testing datasets. ROC curve is a representing
sensitivity versus (1-specificity); for B400 the sensitivity is 100% and the specificity is
equal to 72.7%. These results are very well in network performance and a good result

when the points are in the upper-left corner.

B400 SVM: Figure, B400-3 was a snapshot from classification application in mat-lab and

represents the Confusion matrix for B400 concrete type.
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Figure B400 - 2: ROC curve with B400 concrete by MLPNNs when N=20.
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figure B400-3, which shows the results from using the Support Vector Machine (SVM)
technique by using a classification application. It also shows the percentage for testing
accuracy which was 80.6%. This technique is more accurate than the ES technique.
After some calculations from these results based on these parameters (TP, TN, FP, and
TN), it can be obtained that sensitivity, specificity, and precision percentage equal
79.6%, 81.8%, and 84.9% respectively. In figure B400-4, the whole line with blue
color represents the ROC curve, the ROC curve represents sensitivity versus (1-
Specificity), the sensitivity was 79.6% and the specificity was 81.87% for B400
concrete type. These results are very well in network performance AND good results
when points were in the upper- left corner; here area under curve occupies 84% from
this axis, and the current classifier equals (0.15,0.76). B400 Ensemble: In this figure,
B400-6 was a snapshot from classification application in mat-lab and represents the

Confusion matrix for B400 concrete dataset.
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FigureB400 -5 represents the percentage for testing accuracy was 78.6%, also it
represents the accuracy that was obtained for B400 concrete type when using the
Ensemble algorithm (ES). After some calculations from these results based on these
parameters (TP, TN, FP, and TN), it is obtained that sensitivity, specificity, and
precision percentage equal 78.4%, 78.9%, and 82.1% respectively. In Figure B400 -6,
the whole line with blue color represents the ROC curve, which represents sensitivity
versus (1- Specificity); the sensitivity was 78.4% and the specificity was 78.9% for
B400 concrete type. These results are very well in network performance and good
results are when points were in the upper- left corner; here area under curve occupies

84% from this curve, and the current classifier equals (0.25,0.82).

4.2.6 Classification for Main Factors that Affect CCS in Palestinian Governorates.
This section from results discusses making a classification for the datasets which was

collected from Palestinian governorates laboratories after it removes other parameters
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and remains only factors that affect Palestinian Concrete Compressive Strength
(PCCS), and the new dataset was implemented on the classification models like
MLPNNs, linear support vector machine, and Ensemble algorithm show the results
which are close to previous experiences that were implemented on pervious datasets on

Table 4.2.10

Table 4.2. 10: Summary of All Models of Concrete New Dataset Accuracy.

Type / Algorithm MLPNNSs Linear support | Ensemble
Accuracy vector machine | Algorithm
(SVM) Accuracy Accuracy
New Dataset 92.5% 75.4% 88.0%

Figure ND-1 represents the chart of accuracy results of all models used for the classification
process that applied on the new dataset (ND) after removing other parameters that haven’t the

same effect, the results are close to previous experiences that implement on previous datasets.

Chart of Summary of All Models of Concrete New Dataset
Accuracy

100
80
60
40

20

New Dataset

B Neural Netwoks B SVM Ensemble

Figure ND - 1: Chart of summary of All Models of Concrete New Dataset Accuracy.
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Figure ND-2 represents the chart of comparison between accuracy results for all types of concrete

and the new dataset, the results show that ND accuracy is close to the accuracy of all types of

Concrete.
All Concrete types results VS ND result
100 93.5 93.3 92,5
N 490.2 90 . 90'683.385.6 90 o 88
80 ' 75.5 7 786 75.4
66.5 68.3
60
40
20
0
B200 B250 B300 B350 B400 ND

B MLPNNs BSVM ®Ensemble

Figure ND - 2: Chart of comparison between accuracy all types of Concrete VS ND accuracy.

Table 4.2.11 shows the number of Neuron of Neural Networks that has the best accuracy for each
type which is classified in this table below by using MLPNNSs technique and the ranges of neurons
for the New Dataset was between [2 — 20]. Table 4.2.12 represents the summary of Accuracy
Results for Classification Techniques, the results showed that MLPNNSs accuracy is more accurate

than SVM and Ensemble for New dataset concrete.
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Table 4.2. 11: Analysis of Accuracy of MLPNNSs of Concrete New Dataset Accuracy.

MLPNNs Accuracy
Accuracy 92.5%

N Training Testing | TP | FP | TN | FN | Sensitivity | Specificity | Precision Negative

Accuracy | Accuracy Prediction
2 84.0% 804% |44 |18 |42 | 3 93.6% 70.0% 70.9% 93.3%
4 79.4% 739% |34 |21|45 | 7 82.9% 68.2% 61.2% 86.5%
6 79.4% 76.6% |25 |5 |57 |20 55.5% 91.9% 83.3% 74.0%
8 81.4% 76.6% | 36 |12 | 46 | 12 75.0% 79.3% 75.0% 79.3%
10 87.2% 813% |37 11|50 | 9 80.4% 81.9% 77.1% 84.7%
12 84.6% 81.3% |40 | 13|47 | 7 85.1% 78.3% 75.5% 87.0%
14 83.8% 794% | 33| 8 |52 |14 70.2% 86.6% 80.5% 78.8%
16 85.2% 86.9% |47 | 9 |46 | 5 90.4% 83.6% 83.9% 90.2%
18 74.9% 794% | 30| 7 | 55|15 66.5% 88.7% 81.1% 78.6%
20 89.6% 925% | 36| 3 | 63| 5 87.8% 95.5% 92.3% 92.7%

Table 4.2. 12: Analysis of Accuracy of All Models on Concrete New Dataset.
Summary of All Models of Concrete New Dataset Accuracy.

All Models

Accuracy

Type Accuracy | TP FP | TN | FN | Sensitivity | Specificity | Precision Negative
Prediction

MLPNNs | 92.5% 36 3 63 5 87.8% 95.5% 92.3% 92.7%

SVM 75.4% 201 | 129 | 338 |47 81.0% 72.3% 60.1% 87.8%

Ensemble | 88.0% 296 |34 |333 |52 85.1% 90.7% 89.7% 86.5%

MLPNNSs classification on the new dataset:

In New Dataset concrete, the MLPNNs technique is more accurate than linear support
vector machine (SVM) and Ensemble algorithm. Figure ND-1 represents the confusion
matrix with New Dataset concrete when N=20 is produced by using MLPNNs

techniques.
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Training Confusion Matrix Validation Confusion Matrix
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Figure ND - 3: Confusion Matrix with New Dataset concrete By MLPNNswhen N= 20.

In Figure ND — 3, some experiments were made by changing the number of neurons,
when a number of neurons equal 20, it is more accurate than others. This figure shows
the Confusion Matrix and percentages for training, validation, and testing produced by
MLPNNs, the percentages were 89.6%, 88.8 %, and 92.5% respectively. It also
represents the accuracy that was obtained for the New Dataset concrete type when
using the MLPNNSs, technique is more accurate than others. Some calculations from
these results, it is obtained that sensitivity, specificity, and precision percentage equal

87.8%, 95.5%, and 92.3% in order.
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Figure ND-4 was a snapshot from the classification application in mat-lab and

represents the receiver operating characteristic (ROC) curve for the New Dataset

concrete dataset.
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Figure ND - 4: ROC curve with New Dataset concrete by MLPNNswhen N=20.

The whole line with blue color for all figures represents the ROC curve for training,
validations, testing datasets which is a representing sensitivity versus (l-specificity).

For the new dataset, the sensitivity is 87.8% and the specificity equals 95.5%. These
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results are very well in network performance and a good result when the points are in

the upper-left corner.

ND SVM: this figure, ND-5, was a snapshot from the classification application in mat-
lab and represents the Confusion matrix for new dataset concrete dataset was taken

from Palestinian Governorates.
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Figure ND - 5: Confusion Matrix with New  Figure ND - 6: ROC curve with New Dataset
Dataset concrete by SVM technique. concrete by SVM technique.

Figure ND-5 shows the results from the Support Vector Machine (SVM) technique by
classification application in mat-lab, it also shows the percentage for testing accuracy
which was 75.4%. This figure represents the accuracy for the new dataset concrete type
when using Support Vector Machine (SVM). After some calculations from these
results based on these parameters(TP, TN, FP, and TN), it is obtained that sensitivity,

specificity, and precision percentage equal 81.0%, 72.4%, and 60.9% respectively.
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In Figure ND -6, the whole line with blue color represents the ROC curve, which
represents sensitivity versus (1- Specificity); the sensitivity was 81.0% and the
specificity was 72.4% for the new dataset concrete type. These results are very well in
network performance and good results are when points were in the upper- left corner;
here area under curve occupies 86% from this curve, and the current classifier equals

(0.39,0.88).

ND Ensemble: this figure, ND-7, was a snapshot from the classification application in
mat-lab and represents the Confusion matrix for New Dataset concrete dataset was

taken from Palestinian Governorates.
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Figure ND - 7: Confusion Matrix with New  Figure ND - 8: ROC curve with New dataset
dataset concrete by ES technique. concrete by ES technique.

Figure ND-7 shows the results from using the Ensemble algorithm (ES) technique by
classification application in mat-lab, it also shows the percentage for testing accuracy
which was 88.0%. This figure represents the best accuracy that was obtained for the

new dataset concrete type when using the Ensemble algorithm (ES). It is more accurate
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than Support Vector Machine (SVM), and finally, after some calculations from these
results based on these parameters, it is obtained that sensitivity, specificity, and
precision percentages equal 85.1%, 90.7%, and 89.7% respectively. In Figure ND- 8,
the whole line with blue color represents the ROC curve which represents sensitivity
versus (1- Specificity). The sensitivity was 85.1% and the specificity was 90.7% for the
new dataset concrete type, These results are very well in network performance and
good results are when points were in the upper- left corner; here area under curve

occupies 96% from this curve, and the current classifier equals (0.14,0.90).

4.3  Prediction Results

Initially, Min-Max normalization methods were applied to the Palestinian Concrete
Compressive Strength dataset to optimize the dataset. The experiments were performed
three times on the dataset. These experiments were performed on the Palestinian
Concrete Compressive Strength dataset using MLPNNs, RBFNNs, and RNNs. The
result showed that the Min-Max normalization got better performance regarding
prediction. MLPNNs, RNNs, and RBFNNs were designed and the results were shown
in the table based on the average mean square error. As it showed that the recurrent
layers over 22n obtained the lowest mean square error as shown in Table AP 1 and

Figure P1.
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comparison between prediction algorithms

> -

»

2N 5N 7N 10N 12N 15N 17N 20N 22N 25N 27N 30N 32N 35N 37N 40N 42N 45N 47N 50N

¥ RNNs * MLPNNs ® RBF

Figure P1: Comparison between Mean Square Error with all prediction Models.

Table AP 1: Comparison between Mean Square Error with all Models.

Number of neurons RNNs MLPNNSs RBF
2N 0.0144 0.0181 0.0169
oSN 0.0061 0.0093 0.0165
/N 0.0076 0.0115 0.0163

10N 0.0054 0.0072 0.0155
12N 0.0105 0.0081 0.0156
15N 0.0055 0.0087 0.0144
17 N 0.0036 0.0079 0.0135
20N 0.0058 0.0067 0.0129
22N 0.0012 0.0160 0.0123
25N 0.0040 0.0078 0.0110
27N 0.0016 0.0211 0.0100
30N 0.0086 0.0210 0.0087
32N 0.0057 0.0108 0.0087
35N 0.0030 0.0056 0.0082
37N 0.0031 0.0378 0.0080
40N 0.0070 0.0142 0.0073
42N 0.0076 0.0083 0.0071
45 N 0.0018 0.0102 0.0069
47N 0.0034 0.0128 0.0066
50 N 0.0015 0.0107 0.0064
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Figure P2 shows that the highest percentage for Testing, Training, and validation from MLPNNs
when several neurons equal 35. MSE is 0.0056 when the number of neurons equals 35, the testing
percentage was 93.3% as shown in this figure below, and the training percentage was 97.7%,
validation percentage was equal to 87.9% and overall percentage together was 95.3%. The testing,
training, validation, and overall percentage were 93.3%, 97.7%, 87.9%, and 95.3% respectively.
The best figures that were obtained from trying and changing several neurons from (0, 2, 5, 7, 10,
12, ....., 50) and the least mean square error was obtained from these techniques as shown in Table
AP1 when a number of neurons were 35 and the mean square error was 0.0056 when a comparison
is made between these algorithms, the least means square error was obtained from RNNs was

0.0012 at several neurons was 22.
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Figure P2: prediction of linear regression of Neural Fitting Tool (NFTOOL) when number of neurons was
35.
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Actual VS Prediction

600

® Actual * Prediction

Figure P3: Comparison between Actual and Prediction on Palestinian Governorates Concrete
Compressive Strength.

Figure P3 is a graphic that represents the comparison between the actual data with the
prediction dataset generated from the RNNs, and the MSE was 0.0012 when the
number of neurons equals 22 the comparison between Actual and the Prediction on

Palestinian Governorates Concrete Compressive Strength (PCCS).
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4.4  Challenges and Limitation

Several challenges and obstacles have appeared during the collection of data used in
this research. The most important problem faced in this research is the quality of the
classification and the prediction which are related to the dataset quality and the nature
of the data. This issue was solved using the preprocessing and feature selection
techniques which in general aims to organize the data to be suitable for Machine
Learning techniques. Data normalization is one of the most important types of
preprocessing data that were used to improve the dataset that was collected in the

prediction process.



Chapter 5

Conclusion and

Future Work
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5.1Conclusion and Future Works

Machine Learning Techniques (MLT) in the fields of prediction and classifications of Concrete
Compressive Strength in the Palestinian governorates have excellent effectiveness in this research

and have shown excellent results that can be applied in the real life.

Many algorithms have been used in the prediction phase of the strength of Concrete Compressive
in the Palestinian governorates including MLPNNs, RBFNNs, and RNNSs, and the study proved

that the RNNs have a mean square error (MSE) of 0.0012 at 22 neurons.

In the process of classifiying all types of concrete in the Palestinian governorates, many algorithms
were used to give accurate results, including MLPNNs, SVM, and Ensemble and it has been
noticed that the MLPNNSs were the best algorithm with an accuracy of about 90% for all types of

concrete.

In the process of detecting the most important factors that affect the Compressive Strength of
concrete in the Palestinian governorates, the following clustering algorithms were used: K-Mean,
KSOM, and EM. In EM and KSOM algorithms, EM algorithm is completely identical to the
KSOM algorithms it depends on the standard deviation of the input that was entered so that
mathematically, according to a special analysis of the standard deviation in the algorithms, then
account these factors are considered and considering them the factors affecting the strength of the
concrete's compressive. In the K-Means algorithm, the data were divided on a certain number of
clusters, then the largest value of the concrete compressive strength is taken, and the whole cluster
is also taken so that it is looked at the specific results that have been determined in the cluster of
the largest value if the recorded value is greater than the original value in the first column, then its

factors influencing concrete Compressive Strength are considered.
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Based on the results of each algorithm, different factors were deduced from each algorithm, then
the common elements found by the algorithms were adopted. This work was applied to the entire
dataset of Palestine, and also was applied to each of the Palestinian governorates. The results of

which showed that the obtained factors differ from one governorate to another.

After applying the factors affecting the Compressive Strength of concrete in the Palestinian
governorates in the classification process, the data set consisted of 4 variables which are wi/c ratio,
superplasticizer, location, and age, it showed great agreement with the results that appeared in the
classifications in the Compressive Strength of concrete in the Palestinian governorates so that the

accuracy was also about 90% when using neural networks.

Future Work

A hybrid system that integrates Machine Learning Techniques (MLT) like thinking of integrates
Genetic algorithm (GA) with Multilayer Perceptron Neural networks (MLP) will be created to
have a GA-MLP hybrid system. Another hybrid system that can contain Particle Swarm
Optimization (PSO) algorithm with Multilayer Perceptron Neural networks (MLP) and Genetic
algorithm (GA) can be made. Moreover, another hybrid system that consists of Genetic algorithm
(GA) with Particle Swarm Optimization (PSO) namely GA-PSO can be made so that it shows
better results and accuracy than using single techniques, and Palestinian laboratories will be
communicated to inform them of the effectiveness of using MLT in the process of prediction and
classification of Concrete Compressive Strength in the Palestinian governorates, and inform each
governorate about any factor affecting mainly the Compressive Strength of Concrete for each

governorate separately.
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