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A B S T R A C T

Roundabouts are widely embraced for their perceived safety advantages over other types of unsignalized in-
tersections. However, there has been an observed increase in crash rates at roundabouts over time in Jordan. This
paper delves into modeling traffic crash severity at roundabouts, considering various factors such as weather,
lighting, vehicle characteristics, geometric features, and driver age and gender. To comprehensively analyze
roundabout crashes in Jordan, we constructed rule-based classifiers and Random Forest models after balancing
the dataset. Rule-based models offer interpretability, albeit with some simplicity trade-off, while Random Forest
models provide deeper analysis but require additional explanation. Presenting both outputs to subject matter
experts and policymakers facilitates a holistic understanding of factors contributing to roundabout crashes in
Jordan. Subsequently, CN2 results revealed that injury severity crashes are influenced by the time of the day,
driver age, day of the week, speed, and number of vehicles involved. On the other hand, property damage-only
crashes are affected by the number of lanes, time of the day, type of driver fault, lighting conditions, speed, and
day of the week. The RF model analysis unveiled crucial factors influencing crash severity in roundabouts,
notably the varying impact of driver age, time of day, the number of vehicles involved, seasonality, and vehicle
speed. This proposed approach is promising, comprehensive, and not only enhances the understanding of
roundabout crashes but also informs the development of effective, localized safety interventions.

Introduction

As traffic control systems, roundabouts are generally considered
safer than traditional intersections, primarily due to their circular design
and reduced potential for high-speed, angle, and head-on collisions [1,
2]. Their geometric configuration promotes slower vehicle speeds and
facilitates a continuous flow of traffic, minimizing the severity of
crashes. However, roundabouts are not immune to crashes, and their
safety performance can vary depending on multiple factors [3,4]. The
frequency and severity of crashes at roundabouts are influenced by a
complex interplay of elements such as geometric design, traffic volume,
driver behavior, vehicle characteristics, weather conditions, and light-
ing [5–8]. Understanding these factors and their interactions is crucial in
effectively managing and improving roundabout safety, as it enables the
implementation of targeted measures and engineering solutions to
reduce the likelihood and severity of crashes, ultimately enhancing road

safety for all users [9–11].
Roundabouts have emerged as a popular intersection design world-

wide due to their potential to enhance traffic flow efficiency and reduce
the frequency of severe crashes. In the context of Jordan, where ur-
banization and population growth have led to increased vehicular
traffic, the adoption of roundabouts as a safer alternative to conven-
tional intersections has gained significant attention [12–14]. However,
despite their proven safety advantages, roundabouts in Jordan still
witness a considerable number of traffic crashes, raising concerns about
their overall effectiveness in mitigating crash severity [13]. This study
investigates the complex realm of roundabout safety in Jordan by
examining the multifaceted factors influencing crash severity within
these traffic control systems. Road traffic crashes, particularly their
severity, constitute a critical public health concern globally and in
Jordan, with implications for human well-being and the national
economy [15,16].
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In year 2020 in Jordan, there were a total of 122,970 crashes re-
ported during this period. Among these crashes, about 8451 crashes led
to injuries and about 461 led to fatalities. Additionally, 558 people
suffered major injuries, while 4788 individuals sustained moderate in-
juries. A further 7344 people experienced minor injuries. The estimated
financial cost of these crashes amounted to about 420 million United
States dollars yearly. During the same year, the population of Jordan
stood at about 10.806 million people, and there were approximately
1729,343 registered vehicles.

This study aims to shed light on the intricate relationship between
these factors and crash severity in roundabouts. The findings are ex-
pected to provide valuable insights for policymakers, traffic engineers,
and safety practitioners in Jordan, ultimately facilitating the develop-
ment of targeted interventions to reduce the severity of roundabout
crashes and enhance the overall safety of road users. By delving into the
factors influencing crash severity in roundabouts within the unique
context of Jordan, this research seeks to contribute significantly to the
ongoing discourse on road safety and provide a foundation for evidence-
based decision-making to minimize the societal impact of traffic crashes
in the country.

Literature review

Using different modeling techniques, machine learning has been
done on various elements of transportation network encompassing
roadway, intersection, and freeway segments. Few studies have focused
on roundabouts crashes. We will discuss the methods that were used
previously on different road infrastructure, and we will then relate the
discussion to our study. A study compared the performance of univariate
and bivariate negative binomial regression models for predicting crash
frequencies and severity. The analysis includes property-damage only
(PDO) and fatal plus injury (FI) crashes, as well as single-vehicle (SV)
and multi-vehicle (MV) collisions in a specific engineering district in
Pennsylvania. The results show that the bivariate negative binomial
models, including copula-based models, outperform the univariate
models in predicting crash occurrences and severity [17]. Using crash
data from 221 signalized intersections in Queensland from 2012 to
2018, hierarchical Multinomial Logit models are employed to account
for the hierarchical structure of the data. The results show that the
severity of injuries increases with the number of conflicting lanes but
decreases with the number of cars in the conflicting lane [18].

Another study utilized a logistic regression model to evaluate the
relationship between hit-and-run crashes for different drivers’ status
distraction in Cook County, Illinois. It was found that there were 17
variables that showed a significant increase in the likelihood of a hit-
and-run crash. Additionally, 10 variables were identified that showed
a significant decrease in the probability of such crashes. The variables
associated with hit-and-run crashes exhibit variation based on the
distraction status of the driver [19]. In 2019, research was conducted in
Bangladesh that used multiple machine-learning algorithms to predict
the severity of crashes. Results showed that adaboost and Naive Bayes
have the highest accuracy [20] . Using data from 2018, a study modeled
the severity of crashes that occurred on freeways in the Chinese province
of Hebei. The gradient boosting algorithm was applied to determine
which of the 23 variables that were gathered represented the most useful
feature for classifying the severity of traffic crashes [21]. Several studies
have conducted to model traffic crashes in Jordan [22–24]. In their
studies they used various machine learning were implemented using
Bayesian Network, KNN, SVM and CART [25–30]. However, they used
different modeling techniques to identify the most contributing factors
for identifying the severity of traffic crashes, but urban roundabouts
were neglected. Some factors including driver age and gender were not
used. Moreover, the effect of the contribution factors was not compre-
hensively explained. In this study, we explore the crashes near urban
roundabouts, and we incorporate new explanatory variables as well as
new modeling techniques to model severity of traffic crashes at

roundabouts.
To Summarize, the application of machine learning techniques

across various elements of the transportation network has provided
substantial insights into traffic crash dynamics but lacked investigating
roundabout crashes, underscoring the importance of addressing round-
about crashes. Studies using advanced models, such as bivariate nega-
tive binomial regression in rural Pennsylvania and hierarchical
Multinomial Logit models in Queensland, have shown the effectiveness
of complex modeling techniques in predicting crash frequencies and
severities. These approaches revealed critical insights, such as the
increased severity associated with specific signal strategies and the
impact of road alignments on crash likelihood, which are pertinent to
roundabout safety. Research on driver distraction in Cook County
highlighted the significant role of distraction-related variables in hit-
and-run crashes, a factor highly relevant in the visually and cogni-
tively demanding environment of roundabouts. Additionally, studies
employing machine learning algorithms like Decision Tree, K-Nearest
Neighbors, Naive Bayes, AdaBoost, and gradient boosting have
demonstrated high prediction accuracy for crash severity, emphasizing
the need for incorporating these advanced techniques to improve
roundabout safety analysis. These findings collectively suggest that
roundabouts, with their unique traffic dynamics, require focused
research utilizing advanced modeling and machine learning techniques
to identify and mitigate crash risks effectively.

Despite the extensive use of machine learning in traffic crash
modeling, there remains a gap in the literature regarding the specific
context of urban roundabouts. This study aims to address this gap by
incorporating new explanatory variables and modeling techniques to
analyze crash severity at roundabouts, thus improving upon existing
practices and providing a more comprehensive understanding of the
contributing factors to traffic crashes in these unique settings. This study
can significantly improve existing practices through several innovative
approaches. By focusing specifically on roundabouts in Jordan, it fills a
critical gap in global traffic safety studies, which often overlook this
region. This localized insight allows for the development of targeted
interventions that are more effective and relevant to the unique traffic
conditions and cultural context of Jordan. Second, we utilized a
balanced datasets technique to ensure that the analysis is not skewed
towards more frequent but less severe crashes. This balanced approach
provides a more accurate representation of all crash types, including
those that are less common but potentially more severe. This is crucial
for developing comprehensive safety strategies that address the full
spectrum of crash scenarios. Third, the combination of rule-based clas-
sifiers and Random Forest model used in our study offers a dual
advantage. Rule-based models provide interpretability, making it easier
for policymakers to understand and act on the findings. In contrast,
Random Forest model offers deeper analysis and can capture complex
interactions between variables. Presenting the outputs of both models to
subject matter experts and policymakers ensures a holistic understand-
ing of the factors contributing to roundabout crashes in Jordan. This
dual approach facilitates better-informed policy decisions and the
design of effective safety interventions. Fourth, the detailed analysis of
factors influencing crash severity—such as time of day, driver age,
number of vehicles involved, and vehicle speed—yields actionable in-
sights. These specific factors can be directly targeted in educational
campaigns, enforcement strategies, and infrastructure improvements to
reduce both the frequency and severity of crashes. Lastly, identification
of seasonal variations in crash severity in roundabouts suggests that
traffic management and enforcement practices should be adjusted
seasonally. To the best of our knowledge, this is the first study the delve
into safety measures that are tailored to address the increased risks
during specific times of the year, further enhancing road safety in
roundabouts.
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Dataset

In this research, crash data from the Jordanian Traffic Institute (JTI)
is requested for the most critical roundabouts (i.e., black spots round-
abouts) in the capital of Jordan, Amman. The dataset involves traffic
crashes from 2017 to 2021, with 30,486 crashes from 16 roundabouts
collected. The collected data have 23 variables describing roadway
characteristics and conditions, weather conditions, vehicle, driver, and
crash type with the number of casualties. Data was carefully screened
and processed to avoid misleading results based on data completeness,
and irrelevant or redundant variables were disregarded. The initial
screening of the data shows that there is 98.37 % Property Damage Only
(PD), 1.5 % slight to intermediate injured, and the rest were fatal. This
percentage distribution is highly imbalanced. The preprocessing of the
data followed the methodology according to Fig. 1.

Moreover, researchers showed that crashes on vacation are more
severe than crashes on regular dates [24]. As such, in this study, we
improve the previous models by incorporating driver age and gender in
the analysis. Specifically, the original dataset was reduced to 12,971
data points out of 30,486 were validated. This reduction was done ac-
cording to the previous stat-of-art, as follows:

1. Any missing value in driver age was removed as driver age is a sig-
nificant attribute in crash severity prediction, according to [28]. The
total missing values in driver age are 3770 points.

2. Only driver-at-fault records were included in this work; according to
[28], 13,201 data points were deleted using this condition.

3. An error in recording driver age, for instance, it is not allowed to
drive before 15 years old in Jordan, nor the age can be a negative
value a total of 922 data points were deleted.

The reduced dataset can be adequately analyzed for the causes of
crashes, provided that the data cleaning and reduction steps have been
conducted systematically and based on established methodologies [31,
28]. The dataset is suitable for meaningful analysis for several reasons.
Removing records with missing driver age values ensures that the
dataset retains only those records with complete information on this
critical attribute. Since driver age is a significant predictor of crash

severity, having complete data on this variable enhances the reliability
of the analysis. Moreover, including only driver-at-fault records aligns
the dataset with the focus of many crash severity studies, which aim to
understand the behavior and characteristics of drivers responsible for
crashes. This filtering helps in isolating the effects of driver-related
factors on crash outcomes, providing clearer insights into causality.
Additionally, excluding records with erroneous driver age values, such
as ages below the legal driving age or negative ages, ensures the integ-
rity and accuracy of the dataset. This step removes outliers and potential
errors that could distort the analysis, leading to more robust and reliable
results. Despite the reduction, the dataset still comprises 12,971 data
points, which is a substantial sample size for statistical and machine
learning analyses. This volume is sufficient to uncover meaningful pat-
terns and relationships within the data. By focusing on significant at-
tributes and ensuring data quality, the dataset is tailored for analyzing
crash severity and understanding the underlying causes. This targeted
approach helps in deriving actionable insights that can inform policy,
and interventions aimed at improving road safety.

The variables used in this research were collected from the JTI and
were decomposed as needed. For instance, crash hour was categorized as
’morning’, ’midday’, ’evening’, and ’night’. The month of crash occur-
rence was decomposed into seasons, and vehicle type was decomposed
into four categories. Vehicle categories were classified into five main
types, namely automobile, bike, light truck, medium truck, and heavy
truck.

After pre-processing the data, the first step in data analysis was to
check variables counts and percentages of the total dataset size. A
summary of data descriptive statistics is presented in Table 1. It shows
that more than 97.5 % of the total crashes were property damages (PD),
2.14 % were injury, 0.05 % were seriously injured, and about 0.04 %
fatal crashes. Most of crashes occurred at a flat dry roadway surface
during midday. Moreover, about 95 % of the total crashes occurred in
clear weather conditions. Interestingly, more than 75 % of the crashes
caused by male drivers with age less than 40 years old. Nonetheless, it is
worth mentioning that the variables were categorized by the Jordanian
Traffic Institute.

Method

Problem statement

The crash dataset exhibits a significant imbalance, as highlighted in
Table 1. This dataset encompasses four distinct classes: Property Dam-
age (PD), Minor, Major, and Fatal, with corresponding counts of 12,740,
223, 5, and 3, respectively. To address this imbalance, we made the
decision to transform this multiclass problem into a binary classification
challenge. This entailed merging the three minority classes into a single
category called "Injury". Despite this transformation, the dataset
remained imbalanced, now featuring 12,740 instances in the majority
class and 231 instances in the minority class. This imbalance posed
challenges in generating meaningful rules from the data.

To tackle these challenges, we adopted a two-fold approach as shown
in Fig. 2. We started by equalizing class imbalances through random
down-sampling of the majority class to match the minority class’s size
[32,33]. To create 200 distinct down-sampled datasets, we employed a
systematic approach to ensure balanced and representative samples for
model training and validation. Initially, the original dataset comprised
12,740 instances of the majority class (Property Damage) and 231 in-
stances of the minority class (Injury), which combined Minor, Major,
and Fatal classes. We addressed the class imbalance by randomly
down-sampling the majority class to match the minority class’s size.
Specifically, for each of the 200 datasets, 231 instances were randomly
selected from the majority class. This random selection process was
repeated 200 times, resulting in 200 distinct balanced datasets, each
containing 462 instances. This approach allowed for a diverse repre-
sentation of the majority class across multiple datasets, facilitatingFig. 1. Flowchart of the data collection and preprocessing.
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robust and unbiased model training and validation. By utilizing these
balanced datasets, we were able to construct and evaluate both
rule-based classifiers and Random Forest models, ensuring that the
models were trained on data that accurately reflected the distribution of
the minority class, thereby enhancing their predictive performance and
reliability in identifying patterns related to roundabout crashes. The
resulting balanced dataset was then employed to construct two distinct
types of classifiers: rule-based classifiers and Random Forest models.
This approach was deliberate; rule-based classifiers inherently yield
interpretable models at the expense of some accuracy, while Random
Forest models provide deeper analysis but are complex and challenging
to interpret, often requiring additional steps for explanation. In the final
stage, we integrate and present the outputs of both classifier types to the
subject matter experts and policymakers. This allows them to leverage
both sets of explanations, thus facilitating a more comprehensive un-
derstanding of the contributing factors in roundabout crashes in the
context of Jordan.

The choice to employ a combined approach that integrates rule-
based classifiers and Random Forest models for the analysis of factors
affecting crash severity in roundabouts offers a balanced and compre-
hensive strategy. Rule-based classifiers inherently provide easily inter-
pretable and transparent models, making them invaluable for
understanding the explicit decision criteria behind crash severity clas-
sifications. This approach is particularly user-friendly and is well-suited
for non-technical stakeholders. On the other hand, Random Forest
models, while highly accurate, can be complex and challenging to
interpret. By combining these two methodologies, we strike a thoughtful
balance between deeper analysis and interpretability, ensuring the
model remains accessible to a wide range of users. Moreover, the rule-
based models serve as a valuable tool for validating and explaining
the predictions of the Random Forest models, enhancing the overall
trustworthiness of the results. This combined approach ultimately fa-
cilitates a comprehensive understanding of the factors influencing crash
severity in roundabouts, supporting evidence-based decision-making
and safety interventions.

Training two models, CN2 and Random Forest, is necessary due to
their complementary strengths and the diverse insights they can pro-
vide. CN2, a rule-based classifier, is valued for its interpretability. It
generates straightforward, easy-to-understand rules that can be readily
comprehended by non-technical stakeholders such as policymakers and
traffic safety experts. These rules can illuminate specific conditions or
combinations of factors that lead to higher crash severity, making it
easier to identify and communicate actionable insights. For instance,
CN2 might reveal simple rules such as "if the crash occurs at night and
involves a young driver, the severity is likely to be higher." This level of
clarity is crucial for making informed decisions quickly and effectively.

On the other hand, Random Forest models excel in handling complex
data interactions and providing deeper analysis. They are ensemble
learning methods that combine the predictions of multiple decision trees
to improve overall performance and robustness. Random Forest models
can manage large datasets with numerous variables, capturing the
intricate relationships between factors that contribute to crashes. For
example, they might identify complex patterns such as "a combination of
high speed, poor lighting, and driver age significantly increases crash
severity." Although these models are more challenging to interpret, their
predictive power is essential for developing precise and effective safety
interventions.

Integrating the outputs of these two models can significantly
enhance both the understanding of roundabout crashes and the devel-
opment of effective policies. First, our method offers complementary
insights. The interpretability of CN2 rules can highlight key risk factors
in a manner that is accessible to policymakers, who can then use this
information to prioritize interventions. This can be used for day-to-day
measures and with small datasets on specified areas. The clear rules
generated by CN2 can be directly translated into straightforward policy
recommendations. Meanwhile, the detailed and nuanced predictions

Table 1
The count and percentage of each selected variable in the processed dataset.

Variable Categories Count Percentage

Crash
Crash Type Collision (Hundredth) 12894 99.40 %

Pedestrian (Run Over) 53 0.41 %
Run Off Road (Deterioration) 24 0.19 %

Day Of Week Weekday 9985 76.98 %
Weekend 2986 23.02 %

Hour Group Morning 1666 12.84 %
Midday 5070 39.09 %
Evening 4200 32.38 %
Night 2035 15.69 %

Holiday Yes 371 2.86 %
No 12,600 97.14 %

Season Summer 3385 26.10 %
Fall 3205 24.71 %
Winter 3175 24.48 %
Spring 3206 24.71 %

Driver
Driver Gender Male 10635 82 %

Female 2336 18 %
Driver Age Less Than 25 Years 2262 17.44 %

25–30 Years 2471 19.05 %
30–40 Years 3629 27.98 %
40–50 Years 2270 17.5 %
50–60 Years 1332 10.27 %
>60 Years 1007 7.76 %

Speed ≤30 km/hr 416 3.21 %
40 km/hr 5339 41.16 %
50 km/hr 3607 27.81 %
60 km/hr 3153 24.31 %
70 km/hr 393 3.03 %
≥80 km/hr 63 0.49 %

Roadway
Direction and Location of

Occurrence
Two Directions Separated by
a Middle Island

9205 70.97 %

Two Directions Not Separated
by a Median

2439 18.80 %

One-Way 1084 8.36 %
Inside a Bus Stop 212 1.63 %
Public Squares 31 0.24 %

Alignments (Horizontal
and Vertical)

Uphill Curve 4 0.03 %
Uphill Straight 305 2.35 %
Downhill Curve 7 0.05 %
Flat 12558 96.82 %
Curve 18 0.14 %
Downhill 79 0.61 %

Vehicle
Vehicle Classification Passenger Car 11569 89.19 %

Light Truck 1061 8.18 %
Medium Riding 243 1.87 %
Heavy Truck 71 0.55 %
Bike 21 0.16 %

Vehicle Involved in the
Crash

1 441 3.40 %
2 11782 90.83 %
3 664 5.12 %
≥4 84 0.65 %

Environmental Factors
Surface Condition Dry 12317 94.96 %

Wet 639 4.93 %
Snow 9 0.07 %
Oil 6 0.05 %

Lightening Day 9217 71.06 %
Night and Road with
Sufficient Lighting

2930 22.59 %

Insufficient Night Lighting 520 4.01 %
Sunset 282 2.17 %
Sunrise 15 0.12 %
Darkness 7 0.05 %

Weather Condition Clear 12390 95.52 %
Rain 545 4.20 %
Fog 17 0.13 %
Snow 10 0.08 %
Storm Wind 9 0.07 %

Severity Property Damages 12682 97.77 %
Minor Injured 277 2.14 %
Serious Injured 7 0.05 %
Death 5 0.04 %
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from Random Forest models can validate and refine these priorities by
providing a deeper understanding of the underlying data patterns. This
can be used for deeper analysis and long-term projects that needs large
datasets with multiple factors involved. Random Forest predictions can
support these policies by providing evidence of their expected effec-
tiveness based on historical data. Together, these insights create a more
comprehensive picture of the factors influencing crash severity. This
approach ensures that policies are not only based on clear and simple
rules but are also backed by comprehensive statistical analysis, leading
to more effective and justified interventions. Second, it provides itera-
tive refinement of the models. The integration of both models allows for
an iterative approach to policymaking. Initial rules and insights from
CN2 can be tested and validated using the predictions from Random
Forest models. If the Random Forest model suggests additional factors or
interactions not captured by CN2, policies can be adjusted accordingly.
This iterative process ensures continuous improvement and refinement
of safety interventions. Experts can appreciate the detailed analysis of
the Random Forest model while valuing the simplicity and clarity of CN2
rules. This dual presentation enhances stakeholder engagement,
fostering collaboration and consensus on the best strategies to reduce
roundabout crashes.

The rule-based model

The rule-based model method is a well-established approach within
the realm of crash analysis and road safety assessment [34–36]. This
method relies on constructing an ordered list or unordered set of rules
and a criterion to systematically classify and evaluate traffic crashes
based on various contributing factors and circumstances. Unlike purely
statistical or machine learning-based models, which derive patterns
from large datasets, the rule-based model method explicitly incorporates
expert knowledge and domain-specific guidelines to interpret crash data
[34–36]. In the context of crash analysis, these rules typically encompass
a wide range of factors, including road geometry, traffic control devices,
weather conditions, driver behaviors, and vehicle characteristics,
among others [8,37,38]. By applying these rules to the details of indi-
vidual crashes, the rule-based model method allows for a structured and
comprehensive understanding of the contributing factors of each crash.

Furthermore, this approach is particularly valuable in identifying

recurring patterns and trends in crash data, which can inform targeted
interventions and safety improvements. Rule-based models also serve as
valuable tools for traffic engineers, policymakers, and safety practi-
tioners to develop evidence-based strategies and countermeasures
aimed at reducing the frequency and severity of crashes in specific
contexts or on road segments [34–36]. In essence, the rule-based model
method represents a systematic and knowledge-driven approach to
crash analysis, offering a valuable complement to data-driven tech-
niques and contributing to the broader goal of enhancing road safety by
identifying and addressing the root causes of traffic crashes.

Fig. 3(a) shows the flowchart of the rule-based method that was used
in our study.

The CN2 algorithm is a covering algorithm used for rule-based
classification, particularly in the context of data mining and knowl-
edge discovery [39]. Developed by Peter Clark and Tim Niblett in the
early 1980s [39], CN2 is designed to discover symbolic classification
rules from labeled datasets. CN2 is particularly useful for problems
involving symbolic or categorical data, and it excels at producing
human-interpretable classification rules. It has been used in various
domains. Here’s a brief pseudocode of how the CN2 algorithm works:

1. Initialization: CN2 starts with an empty rule list and a dataset con-
taining instances with associated class labels.

2. Rule Generation: The algorithm iteratively generates rules to classify
instances. It selects a condition (a conjunction of attribute-value
pairs) that maximizes the information gain or another relevant
measure. This condition becomes part of a rule.

3. Rule Evaluation: The algorithm evaluates the rule’s performance by
measuring its accuracy on the training data. It considers how well the
rule correctly classifies instances of the target class.

4. Pruning: If a rule doesn’t significantly improve classification accu-
racy or if it overfits the data, it may be pruned or removed.

5. Iteration: Steps 2–4 are repeated until no further improvement in
classification accuracy can be achieved or until a predefined stopping
criterion is met.

6. Final Rule list: The CN2 algorithm produces a list of rules, each with
conditions that, when satisfied, predict the class label of an instance.

Subsequently, we employed the CN2 algorithm to generate a

Fig. 2. The conceptual flowchart of the problem statement, which balances between level of analysis and interpretability.
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comprehensive rule list capable of classifying the down-sampled dataset
effectively. This rule list was then subjected to evaluation using the
entire dataset, with the precision and recall metrics estimated under the
assumption that the positive class pertains to the Injury class (i.e., the
minority class). Furthermore, we gauged the distance from this rule list
to the optimal operating point within the precision-recall domain. This
distance measurement, as depicted by Eq. (1), captures the trade-off
between precision and recall, revealing the proximity of the rule list’s
performance to the optimal balance between these two metrics.

Distance =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − recall)2
+ (1 − precision)2

√

(1)

This multifaceted procedure was iterated a substantial number of
times, exemplified by 100 iterations in our analysis. Ultimately, the rule
list that yielded the smallest distance measurement was selected as the
optimal one. This selection was pivotal in extracting insights into the
contributing factors behind injuries and property damage occurrences,
thus offering valuable understanding and guidance for future prevention
strategies.

The machine learning (ML) model

ML-based approaches have revolutionized the field of crash analysis
by providing powerful tools to predict, understand, and mitigate traffic
crashes [39–41]. Among these methods, Random Forest stands out as a
versatile and widely applied algorithm for crash analysis [40,42,43].
Random Forest is an ensemble learning technique that combines mul-
tiple decision trees to improve predictive accuracy and generalizability.
In the context of crash analysis, Random Forest (RF) excels at identifying
complex relationships among various contributing factors, making it a
valuable tool for both research and practical applications in road safety.

Fig. 3(b) shows the flowchart of the ML-based method that was used
in our study. The key steps in using Random Forest for crash analysis are
as follows.

1. Data Collection and Preprocessing: The first step involves gathering
comprehensive data on past traffic crashes, including factors such as
road conditions, weather, driver behavior, vehicle attributes, and
crash severity. This data is then cleaned, processed, and formated for
machine learning input.

Fig. 3. Flowchart of the (a) rule-based and (b) ML-based methods.
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2. Feature Selection using Importance: Feature selection is crucial for
identifying the most relevant variables that contribute to crash
severity. Random Forest can handle a large number of features, but
feature selection helps improve model efficiency and
interpretability.

3. Training the Model: In the training phase, the Random Forest algo-
rithm builds a multitude of decision trees using bootstrapped subsets
of the data. Each tree is constructed by considering a random subset
of features at each node. This randomness and diversity among the
trees help mitigate overfitting.

4. Ensemble Learning: Random Forest combines the predictions of in-
dividual decision trees to produce a more robust and accurate overall
prediction. The ensemble nature of the model enhances its general-
ization to unseen data.

5. Prediction and Evaluation: Once the model is trained, it can be used
to predict crash severity for new or unseen data. Evaluation metrics
such as accuracy, precision, recall, and F1 score are used to assess the
model’s performance.

6. Interpretability: One of the advantages of Random Forest is its
interpretability. Researchers and practitioners can analyze the
importance of each feature in the model’s predictions, gaining in-
sights into the factors that contribute most to crash severity.

7. Model Deployment and Recommendations: The insights gained from
the Random Forest model can inform safety interventions and rec-
ommendations. For example, if the model highlights the significance
of certain road conditions or driver behaviors in predicting severe
crashes, targeted safety measures can be implemented to address
these factors.

Analysis and results

The rule-based model

In our study, we applied a rule-based model to systematically analyze
and uncover the key factors influencing crash severity in roundabouts
across Jordan. We used the CN2 algorithm to derive a list of induced
rules. These rules encapsulated the complex relationships between
various contributing factors, including geometric design, driver
behavior, weather conditions, and vehicle attributes. By iteratively
generating, evaluating, and refining rules, the CN2 algorithm allowed us
to discern patterns within the data, shedding light on the factors that
most significantly impact crash severity in the unique context of Jor-
danian roundabouts. We employed robust assessment techniques to
gage the efficacy of the rule-based model’s performance in predicting
crash severity within Jordanian roundabouts. The Receiver Operating
Characteristic (ROC) curve, shown in Fig. 4, demonstrated a substantial
area under the curve (AUC) of about 0.85, indicating a strong ability of
the model to discriminate between different levels of crash severity. This
curve illustrated the trade-off between true positive rates (sensitivity)
and false positive rates (1-specificity) across varying classification
thresholds, highlighting the model’s ability to identify the induced rules
resulted from the model. With these outcomes, the ROC curve reinforced
our confidence in the rule-based approach as a valuable tool for effective
crash severity prediction. However, we also found the precision, recall,
and F1-score equal 9 %, 72 %, and 15 %, respectively.

Table 2 shows the condition, corresponding severity class, the dis-
tribution (i.e., the number of cases for each severity class), and the
length of each rule. These induced rules serve as invaluable insights for
policymakers, traffic engineers, and safety practitioners, providing a
structured framework to inform evidence-based interventions and stra-
tegies to enhance roundabout safety and reduce the severity of traffic
crashes in the region. As shown in Table 2, out of the twenty-seven
resulted induced rules, eleven rules corresponded to the injury
severity class and the rest were for the PD class. For the rules where
injury class was dominant, hour group, driver age, day of week, speed,
and number of vehicles seemed to be the most factors that led to injury

severity crashes. Some notable rules that resulted from the injury class
include if the type of the crash was running off the road (Rule 1); if the
crash occurred while the roadway surface was not dry, and the lighting
of the street is dark (Rule 9); and if the crash occurred in a morning
during the spring season and the driver age is greater than 30 (Rule 14).

On the other hand, where the PD class was leading, the number of
lanes, hour group, the type of driver fault, lighting, speed, and day of
week seemed to be the most factors that led to PD-severity crashes. Some
notable rules that resulted from the PD class include if the crash
occurred in a midday of Sunday during the Winter season (Rule 5); if the
driver did not leave the safe relay distance in a two-lane not separated by
a median and during the midday (Rule 6); if the driver does not leave the
safe relay distance as well but the vehicle speed is greater than 50 and
the crash occurred during the night with sufficient road lighting (Rule
8); and if the crash occurred during the Fall season and a driver of age
greater than 24 violated traffic rules and priorities (Rule 22).

The machine learning model

In the Method section, we emphasized the significant challenge
posed by imbalanced data in our crash analysis study. To tackle this
issue effectively, we implemented a strategic approach by consolidating
the minority classes, thereby simplifying the problem into a binary
classification setup. Our methodology involved the creation of 200
distinct down-sampled datasets, each meticulously crafted for training,
testing, and evaluating partial dependencies and feature importance.
This iterative process allowed us to gain invaluable insights into the
behavior of individual features and their relative significance across
different model runs. By aggregating the results of partial dependency
and feature importance analyses from all models, we not only obtained a
comprehensive understanding of feature importance but also unveiled
the collective partial dependency patterns that underlie the entire
dataset. This rigorous approach not only addressed the imbalanced data
challenge but also enriched our exploration of the intricate relationships
between features and crash severity within roundabouts in Jordan.

In Fig. 5, we present a detailed visualization of the RF results,
providing values for precision, recall, and F1-score achieved by models
individually applied to each of the 200 generated down-sampled data-
sets. This approach resulted in the creation of a distinct model for each
dataset. To ensure the reliability of our assessments, we rigorously
evaluated these models using a 5-fold cross-validation approach,
yielding robust performance metrics across various scenarios. The

Fig. 4. The ROC curve of the rule-based model.
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precision values, averaging at 0.74 and 0.72 for injury and PD, respec-
tively, demonstrate the models’ high accuracy in correctly classifying
crash severity. With an average recall of 0.70 for injury and 0.76 for PD,
the models displayed a commendable ability to identify the most rele-
vant instances of severe crashes. The F1-score, averaging at 0.72 and
0.73 for injury and PD, respectively, encapsulated an overall measure of
model effectiveness, striking a balance between precision and recall. By
examining these metrics across multiple dataset iterations, we gained a
nuanced understanding of how the RF models consistently performed
under varying conditions, further reinforcing the robustness of our crash
analysis.

In Fig. 6, we present a histogram that illustrates the importance of
each of the different features, as quantified by the RF models applied
individually to each of the 200 crafted down-sampled datasets, resulting
in a dedicated model for every dataset. To ensure the robustness of our
analysis, we meticulously employed a 5-fold cross-validation method-
ology. This rigorous approach allowed us to precisely gage the signifi-
cance of each feature within our crash analysis. Among these features,
driver age emerged as the most influential, with an average importance
score of about 0.21. Number of vehicles followed behind, with an
average importance score of about 0.15. Furthermore, hour group and
season group contributed with average importance scores of about 0.09
and 0.08, respectively. The speed then followed by average importance
score of about 0.08. For this study, we will focus our analysis on the five
most important features, and we will further analyze them using the
marginal impact to the Precision-Recall (PR) for the PD class; knowing
that the marginal impact to the PR for the injury class equals one minus
the former. We will add the resulted analysis of the marginal impact to
the RP to the remaining features in the Appendix.

To that extent, the marginal impact to PR typically refers to the
change in Precision-Recall metrics when a specific factor or feature is
modified or introduced into a model or dataset. Precision and Recall are
two fundamental evaluation metrics used to assess the performance of
classification models, especially in cases where class imbalance is pre-
sent. The marginal impact to PR quantifies how much the Precision and
Recall metrics are affected when a particular change is made. It helps
measure the contribution of a specific variable, factor, or modification to
the overall model performance, particularly in terms of correctly iden-
tifying positive instances (True Positives) and minimizing false positives
and false negatives. Calculating the marginal impact to PR involves
comparing the PR metrics before and after the change or modification.
This concept is valuable in model development and feature engineering

Table 2
The induced rules list resulted from the rule-based model.

# Condition Severity
Class

Distribution [# of
Injury, # of PD]

Length

1 Type = Run Over Injury [53, 0] 1
2 Lanes = One-way AND Driver

Age ≤ 45.0 AND Holiday =

False

PD [0, 17] 3

3 Driver Fault = Reversing the
vehicle leading to a crash AND
License Type ∕= Fourth Class
AND Number of vehicles ≥ 2.0

PD [1, 15] 3

4 Number of vehicles ≥ 3.0 AND
Hour Group ∕= Morning

Injury [21, 1] 3

5 Hour Group = Midday AND
Day of Week = Sunday AND
Season Group ∕= Winter

PD [0, 18] 3

6 Driver Fault = The driver does
not leave the safe relay distance
AND Hour Group = Midday
AND Lanes ∕= Two directions
not separated by a median

PD [2, 17] 3

7 Driver Age ≥ 81.0 AND Day of
Week ∕= Monday AND License
Type ∕= Third Class Automatic

Injury [14, 2] 3

8 Driver Fault = The driver does
not leave the safe relay distance
AND Speed ≥ 50.0 AND
Lighting = Night and road with
sufficient lighting

PD [2, 13] 3

9 Roadway Surface ∕= Dry AND
Lighting ∕= Sunset

Injury [12, 3] 2

10 Hour Group = Night AND
Driver Age ≤ 33.0 AND
Lighting ∕= Night and road with
sufficient lighting

Injury [14, 1] 3

11 Day of Week = Tuesday AND
Driver Age ≥ 40.0

PD [2, 13] 2

12 Hour Group = Midday AND
Season Group = Winter AND
Lanes ∕= Two directions not
separated by a median

PD [2, 13] 3

13 Driver Fault = The driver does
not leave the safe relay distance
AND Speed ≥ 50.0 AND Day of
Week ∕= Thursday

PD [3, 16] 3

14 Hour Group = Morning AND
Driver Age ≥ 30.0 AND Season
Group ∕= Spring

Injury [15, 2] 3

15 Vehicle Type ∕= Small ride car
AND Vehicle Type ∕= Shipping
AND Lighting ∕= Insufficient
night lighting

Injury [13, 3] 3

16 Day of Week = Sunday AND
Season Group ∕= Summer AND
Speed ≤ 60.0

PD [3, 12] 3

17 Hour Group = Evening AND
Season Group = Winter AND
License Type ∕= Fifth Class

PD [3, 12] 3

18 Day of Week = Wednesday
AND Lanes ∕= Two directions
not separated by a median AND
Driver Age ≥ 31.0

PD [3, 12] 3

19 Driver Age ≤ 29.0 AND Hour
Group = Night AND License
Type ∕= Third class automatic

Injury [12, 4] 3

20 Day Group ∕= Weekday AND
Season Group ∕= Fall AND
Driver Fault ∕= Sudden change
of lane

PD [2, 13] 3

21 License Type ∕= Third Category
AND Speed ≥ 50.0 AND Day of
Week ∕= Thursday

Injury [14, 2] 3

22 Season Group = Fall AND
Driver Fault ∕= Violations of
traffic rules and priorities AND
Driver Age ≥ 24.0

PD [2, 13] 3

Table 2 (continued )

# Condition Severity
Class

Distribution [# of
Injury, # of PD]

Length

23 Lanes ∕= Two directions
separated by a middle island
AND Day of Week ∕= Monday
AND Driver Fault ∕= Driving a
vehicle without taking the
necessary traffic safety
precautions

Injury [14, 2] 3

24 Driver Fault ∕= Driving a
vehicle without taking the
necessary traffic safety
precautions AND Driver Age ≥

37.0 AND License Type ∕= Fifth
Class

PD [2, 13] 3

25 Driver Age ≥ 32.0AND Lanes ∕=
Two directions not separated
by a median AND License Type
∕= Sixth Category (A)

Injury [14, 2] 3

26 Driver Fault ∕= The driver does
not leave the safe relay distance
AND Day of Week ∕= Saturday
AND Driver Fault ∕= Driver
taking the wrong lane

PD [4, 12] 3

27 True PD [231, 231] 0
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to understand which factors have the most significant influence on a
model’s performance, and it helps in making informed decisions about
which changes or features to prioritize for improving Precision and
Recall. This detailed feature importance analysis offered a nuanced
understanding of the key factors driving crash severity in Jordanian
roundabouts, providing valuable insights for safety interventions and
policy decisions.

In our comprehensive analysis of crash severity prediction within
roundabouts, we investigated the marginal impact to PR graph while
considering the PD class as a reference, given that the marginal impact
to the PR for the injury class equals one minus the PD class. Specifically,
we thoroughly examined the top five important features as shown in
Fig. 6 including driver age, number of vehicles, hour group, season
group, and speed. In Fig. 7, which illustrates the relationship between
driver age and PD crash severity, we conducted a thorough analysis to
understand how the marginal impact of age varied across different age
groups. We observed that for young drivers, typically within the age
range of 18 to 25, the marginal impact ranged from 0.3 to 0.6. This
means that small changes in age within this group had a moderate effect
on the measured metric. As driver age increased, reaching the range of
26 to 60 years old, the marginal impact relatively decreased, hovering
between 0.4 to 0.6. In this age range, the impact of age on the metric was
less pronounced, suggesting that changes in age had a slightly smaller
influence. However, the situation changed notably for drivers older than
60 years. In this age group, the range of the marginal impact started to
dramatically increase. This indicates that for relatively older drivers,
even small changes in age had a substantial effect on the metric being
measured. In essence, this analysis highlights that the marginal impact
of relatively older drivers was the highest, followed by that of young
drivers, in the context of PD crash severity.

In Fig. 8, which presents the marginal impact to PR analysis cate-
gorized by hour groups, we meticulously examined how variations in the
time of day influenced the PR metrics, specifically for the PD class crash
severity. To facilitate our analysis, we partitioned the time of day into

four distinct groups: night, evening, midday, and morning. Our obser-
vations revealed intriguing trends. When crashes occurred during the
night hours, the marginal impact on PR for the PD class spanned a range
from approximately 0.15 to 0.4. This indicated that slight variations in
the time of night had a relatively modest effect on the model’s capability
to predict PD-class incidents. As we transitioned to the evening and
midday hours, the impact notably increased, with the marginal impact
ranging from about 0.5 to 0.6. This suggests that changes in the time of
day during these periods had a more pronounced influence on the
model’s PR metrics for PD-class incidents. Additionally, it’s noteworthy
that crashes during the morning exhibited a Marginal Impact within the
range of approximately 0.35 to 0.6. Overall, our analysis underscores the
significant impact of hour groups on the model’s performance, with the
Marginal Impact being particularly prominent during the evening,
midday, and morning periods in relation to PD-class incident prediction,
compared to the night hours.

In Fig. 9, which presents the marginal impact to PR analysis cate-
gorized by number of vehicles involved in crashes concerning the PD
crash severity, we delved into how variations in the number of vehicles
involved influenced the PR metrics. Our investigation categorized
crashes into single-vehicle, two-vehicles, and multiple-vehicle types.
When dealing with single-vehicle crashes, the marginal impact on PR for
the PD class ranged from approximately 0.1 to 0.4. This signified that
small changes in the number of vehicles in these types of crashes had a
relatively modest impact on the model’s ability to predict PD-class in-
cidents. However, as we shifted our focus to multiple-vehicle crashes,
the marginal impact expanded, ranging from about 0.2 to 0.5. This
indicated that alterations in the number of vehicles in these incidents
had a more noticeable influence on PR metrics. Intriguingly, the most
significant change was observed in two-vehicle crashes, where the
marginal impact dramatically increased, spanning a range from about
0.55 to 0.6. This highlighted the substantial impact that variations in the
number of vehicles had on the model’s PD-class incident prediction,
particularly in the context of two-vehicle crashes.

Fig. 5. The precision, recall, and F1-score of the Random Forest models for the two classes.
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In our analysis of the marginal impact to PR concerning the PD crash
severity and its relationship with different seasons shown in Fig. 10, we
examined how changes in the season group influenced the PR metrics.
Our study encompassed all four seasons: spring, summer, fall, and
winter. Our findings revealed a consistent trend across all seasons. The
marginal impact on PR for the PD class ranged from approximately 0.42

to 0.56 regardless of the season. This indicates that small variations in
the season had a relatively consistent impact on the model’s ability to
predict PD-class incidents throughout the year. The stability of the
marginal impact suggests that seasonality, in terms of its influence on
PD-class incident prediction, remained relatively constant, with only
minor fluctuations observed across the different seasons.

Fig. 6. Features’ importance resulted from RF models.
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Fig. 7. Marginal impact to PR for the driver age on the PD class.

Fig. 8. Marginal impact to PR for the hour group on the PD class.

Fig. 9. Marginal impact to PR for the number of vehicles on the PD class.
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Fig. 10 shows the marginal impact to PR for the PD crash severity in
terms of the speed of the vehicle before crash. The marginal impact
ranged between about 0.4 to 0.65 when the speed is relatively low (i.e.,
less than 30 km/hr). However, it ranged from about 0.42 to 0.55 as the
speed increased until it reaches 70 km/hr and then the marginal impact
increased again to become from 0.35 to 0.6.

In Fig. 10, which presents the marginal impact to PR analysis for the
PD crash severity concerning the speed of the vehicle before a crash, we
explored how variations in vehicle speed influenced the PR metrics. Our
analysis revealed intriguing insights. When examining relatively low
speeds, specifically less than 30 km/hr, the marginal impact on PR
ranged from about 0.4 to 0.65. This suggests that small changes in
vehicle speed within this lower range had a noticeable impact on the
model’s ability to predict PD-class incidents. As we transitioned to
higher speeds, ranging up to 70 km/hr, the marginal impact narrowed
its range, spanning from about 0.42 to 0.55. This indicates that varia-
tions in vehicle speed within this middle range had a slightly smaller
effect on PR metrics. However, what’s particularly noteworthy is that as
the vehicle speed exceeded 70 km/hr, the marginal impact once again
increased. In this higher speed range, the impact ranged from about 0.35
to 0.6. This suggests that changes in vehicle speed at higher velocities
had a more significant influence on PR metrics. Our analysis underscores
the dynamic relationship between vehicle speed and PD-class incident
prediction, with the marginal impact varying based on the speed range,
emphasizing the importance of considering speed as a factor in crash

severity assessment.

Discussion

In this work, we used CN2 and RF to classify crashes severity at
roundabouts in Jordan. In CN2 model, we derived 27 list of rules that
incorporate the different contribution factors. While eleven rules out of
27 were related to predict injury, the rest are related to predict PD-class.
According to the results, traffic crashes that has a type of run off the road
are always associated with injury severity. Run-off crashes in round-
abouts, consistently linked to injury severity, can be explained by a
combination of factors. These incidents often occur when a vehicle exits
the roundabout at an excessive speed, potentially due to driver error or
misjudgment. The design of roundabouts is intended to gradually slow
down vehicles as they navigate the circular path, but if drivers fail to
adjust their speed when exiting, the vehicle may continue a straight
trajectory into a run-off area. The higher velocity, coupled with the
limited space for deceleration and the potential for oblique or head-on
impacts with barriers or roadside objects, significantly elevate the risk
of injury severity. Additionally, the absence of protective features in run-
off areas, such as crash barriers or forgiving infrastructure, contributes
to the increased injury potential in these crashes [44]. Nonetheless,
safety measures aimed at mitigating injury severity in run-off crashes
within roundabouts encompass a multi-faceted approach. These include
design enhancements focused on equipping run-off areas with protective

Fig. 10. Marginal impact to PR for the season group on the PD class.

Fig. 11. Marginal impact to PR for the speed on the PD class.
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features like crash barriers and clear zones, thus reducing the risk of
severe impacts. Managing vehicle speed through proper design, road
markings, and speed limit enforcement is crucial in promoting safer exits
from roundabouts. Driver education campaigns are instrumental in
raising awareness about roundabout-specific driving behaviors and the
importance of adhering to posted speed limits. Effective law enforce-
ment ensures compliance with speed limits and safe driving practices
within roundabouts. The deployment of advanced warning systems, like
flashing lights and dynamic signage, provides real-time alerts to drivers,
helping them make informed decisions during exit maneuvers.

Another finding was the road lightening, which affects the crashes
severity in roundabouts. Our finding indicated that dark light with non-
dry surface always caused injury crashes. This finding meets with pre-
vious findings related to weather and lightening conditions studies [29,
45]. To mitigate injury crashes, it is crucial to ensure that roundabouts
are well-illuminated, especially during adverse weather conditions and
on non-dry road surfaces. Installing and maintaining efficient street
lighting systems can significantly enhance visibility and reduce the
likelihood of crashes, particularly during dark hours or inclement
weather. These safety measures align with previous research in weather
and lighting conditions, emphasizing the critical role that proper road
lighting plays in minimizing crash severity within roundabouts [29,45].

Furthermore, our study emphasizes that young drivers with private
licenses who drive at night particularly in situations involving multiple
vehicles have a higher likelihood of experiencing more severe injuries. A
sub rule derived from this finding highlights the connection between
driver age and light conditions. Specifically, drivers under the age of 33
involved in crashes demonstrated an incidence of injury severity.
However, it was discovered that PD class is not only linked to factors like
driver age and road conditions but also influenced by a range of driver
errors. Various driver errors were identified as significant contributors
to the anticipated level of crash severity. To address the higher likeli-
hood of more severe injuries in these scenarios, safety interventions
could include enhanced driver education programs, emphasizing safe
driving practices at night and under challenging conditions. Addition-
ally, a focus on drivers under the age of 33 can help in reducing injury
severity, potentially through graduated licensing systems and stricter
enforcement of night driving restrictions for novice drivers. Moreover,
addressing a range of driver errors could involve promoting defensive
driving strategies, raising awareness about common driver mistakes,
and fostering a culture of responsible driving among all age groups.

For results from RF, the marginal impact to PR was analyzed for
several features. The analysis revealed that driver age had a varying
marginal impact, with the highest impact observed for older drivers. The
time of day (hour group) showed a significant impact on the model’s PR
metrics. The number of vehicles involved in crashes also had a notice-
able effect on the model’s prediction, with the greatest impact observed
in two-vehicle crashes. Additionally, the analysis showed that season-
ality had a relatively consistent impact on the model’s ability to predict
PD-class incidents, with minor fluctuations across different seasons.
Finally, the speed of the vehicle before a crash had a varying marginal
impact, with the highest impact observed at relatively low speeds and
again at higher speeds. Findings of this study meet several previous
studies including [19,46–51].

In comparing the CN2 and RF models, the performance metri-
cs—precision, recall, and F1-score—clearly demonstrate that the RF
model is significantly more accurate and reliable. The CN2 model, with a
precision of 9 %, recall of 72 %, and F1-score of 15 %, indicates a high
rate of false positives and an overall low predictive accuracy. The low
precision suggests that many of the positive predictions made by the
CN2 model are incorrect, while the high recall indicates that it is better
at capturing actual positives. However, the very low F1-score, which
balances precision and recall, underscores its incapability in providing a
dependable classification. In contrast, the RF model achieves a balanced
and high performance across all metrics, with precision, recall, and F1-
score all equal to 73 %. This uniformity implies that the RF model has a

much better trade-off between precision and recall, accurately identi-
fying true positives while minimizing false positives and false negatives.
Consequently, the RF model is more accurate and reliable for predicting
crash severity at roundabouts, making it the preferred choice for
informing safety interventions and policymaking.

The integration of CN2 and Random Forest models provides a
comprehensive analysis of roundabout crashes in Jordan, each offering
unique insights into crash severity factors. The CN2 model identified 27
rules, highlighting that run-off-the-road crashes are consistently linked
to injury severity due to high exit speeds and inadequate deceleration
spaces, while factors like inadequate lighting on non-dry surfaces further
elevate injury risks. Random Forest model revealed that variables such
as driver age, time of day, number of vehicles, seasonality, and speed
significantly impact crash severity predictions. Older drivers and
nighttime driving were notably influential, with speed variations having
a pronounced effect on crash outcomes. These results from the two
different approaches allow policymakers to understand the underlying
causes of crashes and support the development of targeted safety in-
terventions, such as improved lighting, speed enforcement, and driver
education programs, ultimately enhancing roundabout safety in Jordan.

To address the varying impact of driver age on crash severity, safety
initiatives could include specialized refresher courses and awareness
campaigns tailored for older drivers. Moreover, implementing more
frequent and rigorous license renewal processes for senior drivers,
encompassing vision tests and cognitive assessments, could help ensure
their continued fitness to drive safely. Additionally, promoting the
adoption of vehicles equipped with Advanced Driver Assistance Systems
(ADAS) may assist older drivers in making safer decisions on the road.
Furthermore, recognizing the significant influence of the time of day on
crash severity, it is essential to invest in improved road lighting infra-
structure, especially during night hours. Additionally, bolstering road
signage and launching public awareness campaigns to educate drivers
about the specific challenges and precautions needed during nighttime
driving can enhance safety. For situations involving multiple vehicles,
measures could focus on promoting safe following distances, discour-
aging aggressive driving, and enhancing the effectiveness of traffic
enforcement. Lastly, addressing the consistent impact of seasonality may
involve year-round safety initiatives, such as maintenance of road sur-
faces, anti-icing treatments during winter, and increased monitoring
during adverse weather conditions. To mitigate the varying impact of
vehicle speed, strict adherence to speed limits, especially within
roundabouts, is paramount, supported by speed-monitoring technolo-
gies and targeted enforcement.

Conclusion

Safety modeling plays a crucial role in shaping national policy. By
understanding the factors contributing to crashes and the occurrence of
crashes, agencies can implement effective countermeasures to reduce
these incidents. We quantified the effect of the different contributing
factors pf crash severity on roundabouts in Jordan using the different
modeling techniques. The resulting balanced dataset was then employed
to construct two distinct types of classifiers: rule-based classifiers and
Random Forest models. This approach was deliberate; rule-based clas-
sifiers inherently yield interpretable models at the expense of some ac-
curacy, while Random Forest models provide deeper analysis but are
complex and challenging to interpret, often requiring additional steps
for explanation. In the final stage, we integrate and present the outputs
of both classifier types to the subject matter experts and policymakers.
This allows them to leverage both sets of explanations, thus facilitating a
more comprehensive understanding of the contributing factors in
roundabout crashes in the context of Jordan.

The CN2 model analysis yielded 27 rules, with eleven linked to
predicting injury severity, highlighting the consistent association be-
tween run-off road crashes and injury severity in roundabouts. These
crashes typically occur when vehicles exit roundabouts at excessive
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speeds, often due to driver error or misjudgment. The design of round-
abouts, intended to gradually reduce vehicle speeds, can fail to mitigate
the risk when drivers neglect to adjust their exit speed, leading to higher
velocities and a heightened risk of injury. Safety measures to counter
this issue encompass design enhancements, speed management, driver
education, law enforcement, and advanced warning systems. The RF
model analysis unveiled crucial factors influencing crash severity in
roundabouts, notably the varying impact of driver age, time of day, the
number of vehicles involved, seasonality, and vehicle speed. To address
these factors, a comprehensive set of safety initiatives is recommended.
Specialized refresher courses and awareness campaigns tailored for
older drivers can help mitigate age-related variations in crash severity.
Moreover, implementing more stringent license renewal processes for
senior drivers, incorporating vision tests and cognitive assessments,
ensures their continued safe driving. The adoption of vehicles equipped
with Advanced Driver Assistance Systems (ADAS) offers a technology-
driven solution to assist older drivers in making safer choices.

By providing a detailed, context-specific analysis and combining
interpretability with the level of analysis through innovative modeling
approaches, this study offers valuable insights and practical recom-
mendations for improving road safety around roundabouts in Jordan.
This comprehensive approach not only enhances the understanding of
roundabout crashes but also informs the development of effective,
localized safety interventions. The methodologies and findings can be
generalizable and offer valuable insights that may be adapted and tested
in different contexts. The use of rule-based classifiers and Random Forest
models to analyze crash data provides a robust framework that can be

applied to similar studies in other regions. Future research could focus
on comparing roundabout crash data from various countries to assess
the broader applicability of these findings and refine safety in-
terventions accordingly. While the specific results of this study are most
directly applicable to Jordanian roundabouts, the methodological
approach and general insights into roundabout safety have the potential
to inform roundabout safety improvements in other regions, with
appropriate contextual adjustments.
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Appendix A

Fig. A.1. Marginal impact to PR for the Day of the Week on the PD class.
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Fig. A.2. Marginal impact to PR for the Holiday on the PD class.

Fig. A.3. Marginal impact to PR for the Driver Age on the PD class.

Fig. A.4. Marginal impact to PR for the Vehicle Type on the PD class.
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Fig. A.5. Marginal impact to PR for the Roadway Characteristics on the PD class.

Fig. A.6. Marginal impact to PR for the Weather on the PD class.

Fig. A.7. Marginal impact to PR for the Lightening on the PD class.
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Fig. A.8. Marginal impact to PR for the Surface Type on the PD class.

Fig. A.9. Marginal impact to PR for the License Type on the PD class.

Fig. A.10. Marginal impact to PR for the Roadway Surface on the PD class.
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Fig. A.11. Marginal impact to PR for the Lanes Type on the PD class.

Fig. A.12. Marginal impact to PR for the Crash Type on the PD class.
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