ADVANCING METAHEURISTIC ALGORITHMS:
INNOVATIVE OPERATORS AND ADATIVE
COOPERATIVE ISLAND MODEL FOR EFFECTIVE
OPTIMIZATION

ADVANCING METAHEURISTIC ALGORITHMS:
INNOVATIVE OPERATORS AND ADATIVE
COOPERATIVE ISLAND MODEL FOR EFFECTIVE
OPTIMIZATIO

By:
Thaer Ahmad Thaher

Supervisor:

Prof. Mohammed Awad

Co-Supervisors:
Prof. Alaa Sheta
Dr. Mohammed Aldasht

This Dissertation proposal was submitted in Partial Fulfillment of the
Requirements for the PhD
In Engineering of Information Technology
Joint PhD Program- AAUP, PPU and QU
Deanship of Scientific Research and Graduate Studies

Ramallah - Palestine

[July] [2024]

Joint PhD Program- AAUP, PPU and QU

[July] [2024]

ADVANCING METAHEURISTIC ALGORITHMS:
INNOVATIVE OPERATORS AND ADATIVE
COOPERATIVE ISLAND MODEL FOR EFFECTIVE
OPTIMIZATIO

Thaer Ahmad Thaher

Signature of Author

Committee Members

Prof. Mohammed Awad (Chairman)
Prof. Alaa Sheta (Co-Advisor)

Dr. Mohammed Aldasht (Co-Advisor)

Dr. Rashid Jayousi (Member)

Prof. Ali Mohamed (External Examiner)
Dr. Baker Abdalhaq (External Examiner)

[July] [2024]

.........................

.............................

QLA}S’.AS\Q;}S)ASSMM Lsﬁa\‘))ﬁ.ﬂ\ Gﬂb}&&.\)_a:\“ A_ﬂ.,.A\Aj\c_a.mJ@_ﬂ\ colial é)ﬂ\ (&
G A g B A el AL (§ s 3 g Cumy hpmaladl A g HhY) (5 sine i B o paill 4 a

Y 3oy s A Sl ALl bl ciladal) Radastl 5 il sl (385 Cilaalsl

L) et N Ca il

AU daa il VB85 (o ga 2ada 2|

sl 5 ralall o) fea il 5 o il

20191295, N i 7 N

DEDICATION

Declaration

I declare that this dissertation is the result of my own independent research and has not been
submitted, in whole or in part, for any other degree or academic qualification at any other

institution. All sources of information and assistance have been duly acknowledged.

Dedication

I dedicate this work to my beloved family and parents, whose endless love, guidance, and
sacrifices have been my strongest support. Your wisdom, patience, and unwavering faith in
my capabilities have not only shaped who I am but have also been the foundation of my every
achievement. This accomplishment is a testament to the love and support you have all provided

me.

i

ACKNOWLEDGMENTS

My deepest gratitude goes to everyone who contributed to the journey and completion of this
dissertation. First and foremost, I extend my deepest thanks to my supervisors, Prof.
Mohammed Awad, Prof. Alaa Sheta, and Dr. Mohammed Aldasht, whose expertise,
understanding, and patience added considerably to my graduate experience.

I would also like to express my gratitude to the professors of the PhD program, with special
thanks to Dr. Badie Sartawi. His profound knowledge and dedicated mentorship profoundly
influenced my scholarly development and inspired my research directions. The lessons
learned under his tutelage have been invaluable and will continue to guide my future

endeavors.

iii

TABLE OF CONTENTS

DEDICATION i
ACKNOWLEDGMENTS -
LIST OF FIGURES "
LIST OF TABLES *
LIST OF APPENDICES Y
LIST OF ABBREVIATIONS ™
ABSTRACT i
Chapter One: Introduction 1
0 R 7<) 4 [1
1.2 Problem Statement............... 4
1.3 ResearchObjectivescciiiiian... 7
1.4 ResearchQuestions.................c it .. 8
1.5 Significance of the Study 9
1.6 Dissertation Organization...................ccuvuunn.n.. 10
Chapter Two: Background and Literature Review 12
2.1 Metaheuristic Algorithms: An Overview 12
2.2 Parallel Approachesin MHs 19
2.3 Fundamentals of Cooperative Island-Based Model 25
2.4 Literature Review 31
Chapter Three: Methodology 63
3.1 ResearchDesign............. ..., 64
32 DataCollectionc.ouiiniiniiiniinan .. &9
33 DataAnalysiS............iiiii i 90

v

Chapter Four: Results 93

4.1 Common Experimental Setup 93
4.2 Experimental Results and Simulations on Mathematical 96
Benchmarks
4.3 Experimental Resultsof CSA 100
4.4 Experimental Resultsof CapSA 127
4.5 Impact of the Adaptive Island Migration Policy 138
4.6 Experiments and Results of Real-World Applications.. 142
Chapter Five: Discussion 187
5.1 DiscussionofResults.......... 187
52 Implications......... ...t 190
53 LiMitationsottt 191
Chapter Six: Conclusion and Future Work 194
6.1 Summary and Conclusion. 194
6.2 Recommendations and Future Work 195
References 197
Appendices 228
oadldll 234

Figure

1.1
2.1

2.2

23

24
2.5

2.6

2.7

2.8

2.9
2.10

2.11

2.12
3.1
3.2
3.3

4.1

LIST OF FIGURES

Description

Visual roadmap of dissertation structure
A visualization of exploration and exploitation in MHs
Classification of MHs by the number of search agents, including
representative examples for each category
Classification of MHs by the source of inspiration, including
representative examples for each category
Representation of parallel design models of meta-heuristics
Migration process among algorithms using random ring topology
Example of population segmentation in an island model framework
(N=12,s=4,1=3)
The general process diagram of the island-based parallel mechanistic
The schematic Pursuit behavior in CSA
Flowchart of the standard CSA
Number of island-based MHs publications per year
Number of publications per each algorithm combined with island
based parallel model
Distribution of used migration strategies
Overview of research methodology steps
Trend of control parameter CP over 1000 iterations
The general process diagram of the proposed iIECSA

Representative visualizations of mathematical benchmark functions

Vi

15

18

22

27

30

30

34

35

60

60

61

63

74

80

98

4.2

43

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

Comparison of convergence curves of CSA and proposed variants
obtained in some of the benchmark problems
Comparison of diversity curves of CSA and proposed variants
obtained in some of the benchmark problems
Box-plots of CSA, ECSA, IECSA on some of the standard
benchmarks
Comparison of Convergence Curves for CSA, ECSA, and iECSA on
some of the standard benchmark problems
Friedman mean rank based on results in Table 5.4
Scalability results of the CSA variants in dealing with F1-F13
functions with different dimensions
The convergence and diversity plots of iIECSA using different values
of population size
The convergence and diversity plots of iIECSA using different values
of migration frequency
The convergence and diversity plots of iIECSA using different values
of migration rate
Schematic view of the results of Friedman rank test (standard and
CECE2014 suites) based on results in Tables 5.11 and 5.12
The convergence and diversity plots of top algorithms on some
standard benchmarks
The convergence and diversity plots of top algorithms on some

CEC2014 benchmarks

vii

102

104

107

108

109

110

113

115

117

124

125

126

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

Convergence and diversity curves for the standard CapSA and its
enhanced variants on standard test function F5 and sampled IEEE
CEC2014 test functions (F3, F9, and F16)
Convergence and diversity curves for the standard CapSA and its
enhanced variants on sampled IEEE CEC2014 test functions (F18,
F21, F26, and F29)

Comparative analysis of convergence and diversity curves for
CapSA, ECapSA, and iECapSA on standard test function F5 and
sampled IEEE CEC2014 test functions (F3, F9, and F16)
Comparative analysis of convergence and diversity curves for
CapSA, ECapSA, and iECapSA on sampled IEEE CEC2014 test
functions (F18, F21, F26, and F29)

Mean rank comparison of iECSA and iECapSA with static and
adaptive migration policies based on results in Tables 5.20 and 5.21
Simple FNN architecture with one hidden layer
Solution representation for MHs-Based training of FNN
Flowchart of optimizing FNN with the cooperative island-based
model
MSE convergence curves for basic and enhanced CSA and CapSA
models across various biomedical datasets
Flowchart of the multilevel image segmentation framework using
cooperative island-based optimization model
Set of tested COVID-19 CT images and their histograms
Variation of cross entropy with increasing number of thresholds for

1IECapSA on COVID-CT1 and COVID-CT?2 test images

viii

131

132

136

137

141

143

145

146

152

159

162

166

4.26

4.27

4.28

4.29

4.30

431

4.32

Convergence trends for CSA and CapSA variants on COVID-CT
Images
Graphical representation of the selected SRGMs
Overall approach of SRGM optimization
MSE convergence trends for CSA and CapSA variants on Delayed S-
Shaped SRGM
Visualization of MSE and VAF across different datasets and SRGMs
using CSA, ECSA, CapSA, ECapSA, iECSA, and iECapSA
Comparison of actual vs. iIECSA-estimated failures across selected
datasets for three SRGMs
Actual vs. predicted cumulative faults and correlation scatter plots for

the Delayed S-shaped SRGM estimated by iECSA

X

167

172

173

179

181

183

184

Table

2.1

2.2

23

24

2.5

2.6

3.1

32

33

3.4

4.1

4.2

4.3

4.4

LIST OF TABLES

Description

Overview of MHs based on the source of inspiration
Design models of parallel metaheuristics
Summary of recent advances in the CSA and their applications

across various fields
Summary of recent studies utilizing CapSA for various applications

Summary of main previous works that incorporated island model
with MHs for optimizing continuous benchmark functions
Summary of main island-based metaheuristics designed for specific

real-world applications
Summary of enhanced variants of CapSA and their implications

Time Complexity Analysis of each step in the proposed iIECSA

Summary of Datasets and Benchmarks Used

Summary of Evaluation Metrics Across Test Domains

Parameter settings of iIECSA and other algorithms

Investigated variants of CSA

Results of CSA variants on the standard 30-dimensional unimodal
and multimodal test problems
Comparison of CSA variants and cooperative island-based variants

for the standard 30-dimensional functions

Page

20

22

46

52

56

59

75

82
90

91

95

100

101

106

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

Results of benchmark functions F1-F13 with 100 dimensions

Results of benchmark functions F1-F13 with 500 dimensions

The experimental design for evaluating the sensitivity of iECSA N,
MF, and Mr parameters
The impact of population size on the convergence behavior of

1IECSA

The impact of migration frequency on the convergence of iECSA

The impact of migration rate on the convergence of iECSA

Comparison between iECSA and other algorithms for the unimodal,
multimodal, and fixed-dimension multimodal benchmark functions
Comparison between iIECSA and other algorithms on IEEE

CEC2014 functions
Average rankings of the algorithms calculated using Friedman’s test

Comparison of iIECSA Performance: Wilcoxon Test Results for

Superior, Inferior, and Equal Outcomes
Summary of enhanced variants of CapSA and their implications

Comparative performance of CapSA and enhanced MCapSA
variants on 30-dimensional standard test functions
Performance comparison of standard CapSA and enhanced variants
on [EEE CEC2014 30-dimensional test functions
Performance comparison of standard CapSA, ECapSA, and their
island-based counterparts iCapSA and iIECapSA on 23 Standard

mathematical functions

Xi

109

111

111

112

114

116

119

121

123

123

127

128

129

133

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

Performance comparison of standard of Standard CapSA, ECapSA,
and their island-based models iCapSA and iECapSA on the IEEE
CEC2014 benchmark functions
Comparative performance of iECSA and iECapSA with static and
adaptive migration policies on 30-dimensional standard
mathematical functions
Comparative analysis of iIECSA and iECapSA performance on 30-
dimensional CEC2014 benchmark functions with static and adaptive
migration policies
Description of the biomedical datasets used for evaluating the

training of FNN

Confusion matrix for binary classification

MSE results for CSA and CapSA variants across biomedical datasets

Testing classification accuracy for CSA and CapSA variants across
biomedical datasets

Testing classification F1-score for CSA and CapSA variants across
biomedical datasets

Classification performance comparison between stochastic gradient

descent solvers and metaheuristic models across biomedical datasets

Average MSE results of the proposed iIECSA and iECapSA against

state-of-theart Algorithms for neural network optimization
Accuracy results of the proposed iIECSA and iIECapSA against state-

of-the-art Algorithms for neural network optimization

Xii

134

138

140

149

149

150

151

151

153

155

155

4.30

431

4.32

4.33

4.34

4.35

4.36

4.37

4.38

4.39

Comparative Mean Fitness Values (Cross Entropy) for Basic and
Enhanced Variants of CSA and CapSA at Threshold Levels 4, 6, 8,
and 10
Comparative evaluation of SSIM scores for CSA and CapSA
variants on COVIDCT images
Performance Comparison of iECapSA with the Cooperative Island-

Based Model (CPGH) from literature [4]

Parameter ranges for SRGM estimation

Summary of datasets used for SRGM Evaluation

Average MSE obtained by CSA and CapSA variants for SRGM
parameter estimation across diverse datasets
VAF results of CSA and CapSA variants for SRGM parameter
estimation across 10 datasets
Optimal SRGM parameters estimated by iECSA across datasets with
corresponding MSE and VAF
Comparative MSE of iECSA and other Metaheuristic Algorithms for
SRGM Parameter Estimation
Average VAF scores of iIECSA and other Metaheuristic Al- gorithms

for SRGM Parameter Estimation

xiii

165

168

168

174

175

178

180

182

185

186

Appendix

LIST OF APPENDICES

Description
Characteristic Tables of Real-Valued Mathematical

Functions

Statistical Results

X1V

g
&
¢

228

230

Abbreviation

ABC
ACO
Al
ATCSA
BFO
CapSA
CEC
ChOA
COVID-19
CpPU
CS
CSA
CT

DE

EAs
ECapSA
ECSA
FNN
FPA
FSA
GA
GLS
GPUs
GRASP
GWO
HHO
HS

ILS
KHA

LIST OF ABBREVIATIONS

Description
Artificial Bee Colony

Ant Colony Optimization

Artificial Intelligence

Adaptive Tournament Selection Based Guided CSA
Bacterial Foraging Optimization
Capuchin Search Algorithm

Congress on Evolutionary Computation
Chimp Optimization Algorithm
Coronavirus Disease 2019

Central Processing Unit

Cuckoo Search

Crow Search Algorithm

Computed tomography

Differential Evolution

Evolutionary Algorithms

Enhanced Capuchin Search Algorithm
Enhanced Crow Search Algorithm
Feedforward Neural Network

Flower Pollination Algorithm

Fish Swarm Algorithm

Genetic Algorithm

Guided Local Search

Graphics Processing Units

Greedy Randomized Adaptive Search Procedure
Grey Wolf Optimizer

Harris Hawks Optimization

Harmony Search

Iterated Local Search

Krill Herd Algorithm

XV

MFO
MHs
MLT
MPA
MRCSA
MSE
PMHs
PSO
PyGMO

SA

ST
SMA
SRGMs
SSA
SSIM
TMHs
TS

UCI
VAF

WHO
WOA

Moth-Flame Optimization
metaheuristics

Multi-level thresholding

Marine Predators Algorithm
Modified Random Movement CSA
Mean Squared Error
Population-based Metaheuristics
Particle Swarm Optimization
Python Parallel Global Multiobjective
Random Access Memory
Simulated Annealing

Swarm Intelligence

Slime Mould Algorithm

Software Reliability Growth Models
Squirrel Search Algorithm
Structural Similarity Index
Trajectory-based Metaheuristics
Tabu Search

University of California Irvin
Variance Accounted For

Variable Neighborhood Search
Wild Horse Optimizer

Whale Optimization Algorithm

XVi

ABSTRACT

Advancing Metaheuristic Algorithms: Innovative Operators and Adaptive

Cooperative Island Model for Effective Optimization

By

Thaer Ahmad Thaher

Swarm intelligence algorithms are renowned for their ability to tackle complex global
optimization problems by mimicking natural processes. However, these algorithms,
including the Crow Search Algorithm (CSA) and Capuchin Search Algorithm (CapSA),
often suffer from inherent limitations such as low search accuracy and a tendency to
converge to local optima. This thesis aims to develop advanced variants of these algorithms
that could effectively handle a diverse range of theoretical and practical optimization
problems. One widely explored approach is the structured population mechanism, which
maintains diversity during the search process to mitigate premature convergence. The island
model, a common structured population method, divides the population into smaller
independent sub-populations called islands, each running in parallel. Migration, the primary
technique for promoting population diversity, facilitates the exchange of relevant and useful
information between islands during iterations. Enhancements to CSA and CapSA include
introducing adaptive strategies and novel operators, enhancing them into variants named
ECSA and ECapSA, respectively. Furthermore, it integrates these enhancements within an
island-based model -IECSA and iECapSA- equipped with an adaptive migration policy
designed to dynamically adjust migration rates based on real-time evaluations of population
diversity and fitness. This innovative approach aims to avoid the limitations of traditional
island models and enhance global search capabilities. The performance of the proposed
models is evaluated using 53 real-valued mathematical problems and three practical
applications: neural network training, multilevel thresholding for image segmentation, and
software reliability growth modeling. It is also validated by conducting an extensive
evaluation against a comprehensive set of well-established and recently introduced meta-
heuristic algorithms. Experimental results demonstrate that the enhanced variants of CSA
and CapSA outperform their fundamental counterparts in the majority of test cases,
providing more accurate and reliable outcomes. Furthermore, extensive experimentation
consistently showcases that the iCapSA outperforms its comparable algorithms across a
diverse set of practical applications.

Xvil

Chapter One: Introduction

1.1 Overview

Optimization is the process of finding the best (optimal) solution among different options
while considering various constraints and conditions [1]. It is a crucial procedure that is
extensively utilized in the scientific and engineering domains. Essentially, optimization ad-
dresses the challenge of planning, designing, and operating systems in ways that are both
efficient and effective, thereby ensuring the attainment of superior outcomes. This involves
identifying the optimal solutions that fulfill specific criteria to either maximize or minimize
a defined objective function [2].

Optimization theory is a specialized branch of mathematics and computational sciences
that focuses on identifying and analyzing the best possible solutions to specific problems
by utilizing various techniques and algorithms [3]. It is widely applied across diverse fields
such as engineering, physics, economics, and biomedicine [4]. Furthermore, in the realm of
emerging technologies, it plays a critical role in the development and enhancement of Artifi-
cial Intelligence (AI) systems. It is extensively used in refining machine learning algorithms
and enhancing AI’s decision-making processes [5, 6, 7, 8, 9, 10]. Optimization methods are
broadly classified into three categories: analytical, graphical, and numerical [3]. Numerical
methods are the most widely used and effective, as they use iterative operations to refine so-
lutions from an initial estimate until a predefined convergence criterion is met. This approach
is particularly useful for handling intricate problems that cannot be solved using analytical
or graphical methods [1].

Numerical optimization techniques are generally categorized into two main families: ex-
act methods and approximate methods [11]. These methods are designed to address ob-
jective functions, which can be categorized as single-objective or multi-objective [12] or
many-objective [13]. Exact methods are designed to find an optimal solution with certainty,

systematically exploring the solution space based on predefined rules.

Examples of exact methods include linear programming, dynamic programming, and the
branch and X family of algorithms (such as branch and bound, branch and cut, and branch
and price) [14]. These methods may be viewed as tree search algorithms, where the search
is carried out over the entire relevant search space, and the problem is solved by subdividing
it into simpler problems. In contrast, approximate methods are used when finding an exact
solution is impractical due to the complexity or size of the problem. These methods focus on
finding a good enough solution within a reasonable timeframe and are particularly valuable
for large-scale problems where an exhaustive search is not feasible. Approximate meth-
ods are commonly divided into three categories: specific-problem heuristics, metaheuristics,
and hyper-heuristics. Specific-problem heuristics are tailored and designed to solve par-
ticular problems or specific instances. Metaheuristics are general-purpose algorithms that
can be applied to a wide range of optimization problems. They are upper-level methodolo-
gies that can guide the design of underlying heuristics to solve specific optimization prob-
lems, including techniques like Genetic Algorithm (GA) and Particle Swarm Optimization
(PSO) [15]. Hyper-heuristics are search techniques for selecting, generating, and sequencing
(meta)-heuristics to solve challenging optimization problems [16].

Combinatorial optimization problems, including scheduling, routing, and decision prob-
lems, are predominantly classified as NP-complete or NP-hard problems, where the time re-
quired to find an exact solution grows exponentially or even factorially with the size of the in-
put [17, 18, 19]. Traditional mathematical programming techniques are inadequate for solv-
ing these problems [20, 21]. Conventional mathematical programming methodologies find
themselves inadequately prepared to effectively handle the intricacy and non-linearity inher-
ent in present-day optimization cases [22, 23]. The complex inter-dependencies and high-
dimensional spaces encountered in real-world situations frequently result in sub-optimal so-
lutions when employing traditional methods [24]. To surpass these constraints, innovative
optimization methodologies, including evolutionary algorithms and metaheuristic methods,
have gained prominence due to their capability to traverse intricate solution landscapes and
uncover solutions that are nearly optimal [25]. These advanced techniques utilize stochas-

tic processes and strategies based on population-based search principles, thus solidifying

their status as indispensable tools for addressing the diverse and intricate challenges posed
by contemporary optimization problems [26, 27]. Stochastic optimization techniques, such
as Metaheuristics (MHs), have emerged as powerful alternatives [28]. MHs are approxi-
mation algorithms that find near-optimal solutions within a reasonable computational time
[29]. They are problem-independent and adaptable to various domains, including image seg-
mentation, feature selection, machine learning optimization, fault diagnosis, economic local
dispatch problems, and global optimization, which these works proposed by [30, 8, 31, 32,
33, 34, 35].

MHs follow a fundamental principle: they generate random solutions or populations and
iteratively improve them using stochastic mathematical operators until a termination condi-
tion is met [36, 37, 38]. Among MHs, population-based approaches have gained popularity
due to their effective performance [39]. These approaches strike a balance between global
search (exploration) and local search (exploitation), reducing the effective search space by
efficiently exploring promising regions [40]. Well-regarded MHs should possess this bal-
ance to avoid getting stuck in local optima [41, 42]. Recently, innovative Swarm Intelligence
(SI) methods inspired by nature have emerged, incorporating well-known natural processes
into numerical simulations. These algorithms effectively address problems by avoiding local
minima, accelerating convergence, and providing accurate solutions [43, 44]. Examples of
these algorithms include Grey Wolf Optimizer (GWO), Moth-Flame Optimization (MFO),
Flower Pollination Algorithm (FPA), Krill Herd Algorithm (KHA), Squirrel Search Algo-
rithm (SSA), Crow Search Algorithm (CSA), and Capuchin Search Algorithm (CapSA).
These algorithms share common characteristics: the particles or agents are simple and non-
sophisticated; they collaborate through indirect communication mediums'; and their move-
ments in the decision space are strategically designed to mimic the natural behaviors of the
species they are inspired by [11]. The CSA [45] and the CapSA [46] are recent, innovative
contributions in the realm of nature-inspired algorithms, each drawing inspiration from the
intelligent foraging behaviors of their respective animal counterparts. The CSA mimics the

intelligent foraging behaviors of crows, while the CapSA imitates the search tactics used by

I'Self-organization using indirect cooperation is an important issue in biological systems

capuchin monkeys in pursuit of food. Both methods demonstrate how successfully utiliz-
ing intelligent and adaptive behaviors derived from the natural world can lead to robust and
effective solutions in the optimization field.

The use of MHs has progressed alongside parallelism and distributed computing. This
has resulted in reduced search times and better outcomes [47]. The island model is a well-
known cooperative algorithmic-level paradigm, originally designed to develop parallel Evo-
lutionary Algorithms (EAs) [48, 49]. This model is developed based on the structured pop-
ulation concept where a larger population is divided into smaller, isolated sub-populations,
commonly referred to as ’islands’ [50]. Each of these islands evolves independently in a par-
allel process, typically using the same or different evolutionary or metaheuristic processes
[51]. After certain intervals, the islands interact with each other through a process known
as migration. This distinctive process in the cooperative island model involves exchanging
selected individuals among islands. Migration introduces new variations to the populations
on each island, aiding in maintaining diversity and preventing early convergence [52]. The
frequency and policy of migration—such as which individuals migrate, how many migrate,
and between which islands they move—are crucial parameters that can significantly im-
pact the performance of the algorithm [53]. Because each island can be processed on a
separate processor or core, the island model is particularly useful in systems that support
parallel computing. The island model is a good tool for dealing with complicated optimiza-
tion issues in many fields of science, engineering, and data processing. Works proposed by
[54, 55, 56, 57, 53, 58, 51, 59, 60] show that it has particularly excelled at solving various

optimization issues.

1.2 Problem Statement

Consistently improving MHs performance across varied problem landscapes remains a fun-
damental challenge, despite their crucial role in tackling intractable optimization issues.

These challenges include:

1.2.1 Challenge A: False Convergence in MHs

False convergence refers to a scenario where a metaheuristic algorithm fails to reach the
global optimal solution within a predetermined maximum number of iterations or evalu-
ations. This issue can arise when the population in a population-based search algorithm
does not truly converge to the global optimum, often due to an imbalance between two cru-
cial aspects: global exploration and local exploitation [61]. Effective optimization requires
balancing exploration—the capacity to investigate new, unexplored regions of the search
space—with exploitation, which focuses on refining solutions within promising regions.

False convergence can result from three primary situations [61]:

1. Slow Convergence: The algorithm gradually advances towards the solution, but the

pace is too slow to reach the global optimum within the allowed time or iterations.

2. Premature Convergence: The algorithm converges to a local optimum too early. As
iterations continue, MHs frequently produce suboptimal results because they lose the
diversity required to thoroughly investigate potentially promising areas of the search

space.

3. Stagnation: This occurs when the algorithm reaches the maximum number of genera-
tions without converging to a fixed point, and the population, due to a lack of exploita-

tion tendency, is unable to produce solutions better than those already found.

Each metaheuristic algorithm has a unique set of exploration and exploitation operators,
which may provide certain challenges. For instance, some algorithms may perform well
in exploration but struggle to effectively focus on optimal solutions, leading to extended
search times without significant improvements. Conversely, certain algorithms may con-
verge quickly towards a solution but lack the explorative power to escape local optima, thus
missing potentially better solutions. This differentiation in performance and challenges is
particularly evident in the case of CSA and CapSA, which exemplify these challenges. Each
has unique exploration and exploitation mechanisms that can result in an imbalance, either
through excessive focus on exploration or premature convergence due to an overemphasis on

exploitation.

1.2.2 Challenge B: Algorithmic Limitations in CSA and CapSA

The fundamental CSA algorithm has three major flaws. Firstly, it employs fixed aware-
ness probability and flight length values, limiting its adaptability [62]. Secondly, it adopts a
single-mode searching mechanism, where each individual conducts a random search within
a sector area defined by its current position, the historical ideal position (memory location)
of other individuals, and their value differences. This approach restricts the crow’s flying
activity, reducing flexibility and mobility [63]. Thirdly, while the CSA performs well in ex-
ploration, it struggles in exploitation. The primary CSA relies on random individuals and
probabilities to guide the search process, overlooking the significance of optimal solutions in
population evolution. Consequently, the CSA shares flaws common to other swarm intelli-
gence algorithms, such as premature convergence, low search accuracy, and susceptibility to
local optima. These issues become particularly challenging in multi-dimensional optimiza-
tion problems [63].

Similarly, the CapSA exhibits its unique limitations. Specifically, the alpha capuchin,
which represents the best solution obtained so far, plays a pivotal role in generating new
individuals within the basic framework of CapSA. This aspect of CapSA underscores its
tendency towards a more exploitative approach. Furthermore, the followers, which repre-
sent half of the population, are repositioned based on a more exploitative operator. This
mechanism ensures that a significant portion of the search effort is concentrated around the
currently known best solution, intensifying the search in its vicinity. However, this approach
may lead to a lack of diversity in the population, making it less practical and potentially
resulting in rapid intensification and premature convergence. Consequently, to improve the
performance of CapSA, it is necessary to incorporate additional operators that emphasize

exploration and provide a better balance between diversification and intensification.

1.2.3 Challenge C: Design of Parallel MHs

When designing parallel MHs, we should decide on the specific parallelism model and a
well-established algorithm to solve the targeted problems. This choice has a significant im-

pact on the effectiveness of the proposed model. Many MHs, with their different classifica-

tions in the literature and their continuous growth, make this choice an ongoing challenge.
Despite the well-performing of recent parallel MHs, trying to design new parallel MHs and
efficiently handling new classes of problems is a moving target. In general, cooperative is-
land model techniques for MHs are distinguished depending on several factors, including the
mechanism of communication and the nature of the information exchanged. These factors
are problem-dependent; they should be appropriately tuned for each targeted problem. This
is not applicable significantly when solving large-scale, time-consuming real problems. Ac-
cording to [64], the exchange of information should be timely and meaningful. Particularly,
some design questions such as information exchange decision criteria (when?), the commu-
nication topology (where?), the exchanged information (what?), and the integration policy
(how?) should be addressed when designing the model [47].

While existing basic island models in parallel MHs are beneficial for maintaining diver-
sity and preventing premature convergence, they often lack the flexibility to adapt dynam-
ically to the evolving needs of the optimization process, leading to a sub-optimal balance
between exploration and exploitation. Therefore the dynamic adaptation of parameters in a
reliable way is still limited. A key aspect of this dynamic adaptation is the migration policy,
encompassing both the migration rate and the nature of information exchange. The migra-
tion rate, which determines the proportion of the population to be migrated between islands,
is a critical parameter. For instance, a low rate may limit effective cooperation between
neighboring islands, leading to a more independent operation. In contrast, a high rate could
reduce diversity and raise the possibility of early convergence. The choice of whatever data
to share during migration—such as problem-specific information, diversity measures, or so-
lution quality—is equally crucial since it has a significant impact on the algorithm’s overall
performance. The island model must successfully balance these two factors—the rate and

content of migration—to perform well in challenging optimization tasks.

1.3 Research Objectives

The main aim of this research is to develop an efficient parallel optimization model that effec-

tively deals with optimization problems encountered in real-world applications. The primary

focus is on improving the performance of recent MHs, such as the CSA and the CapSA, by
incorporating novel operators and embedding the cooperative island model principles. This
integration aims to enhance the algorithms’ ability to explore and exploit solutions, ensuring
a more comprehensive search of the solution space. Moreover, the model will include an
island framework that can dynamically adjust its strategies to handle different optimization

challenges. The specific objectives are as follows:

1. Develop enhanced variants of CSA and CapSA with improved exploration and ex-

ploitation capabilities.

2. Design and introduce an adaptive island migration policy that dynamically adjusts
migration rates based on real-time evaluations of population diversity and the fitness

of individual islands.

3. Evaluate the effectiveness of the proposed models across a diverse set of optimization
problems, including both theoretical real-valued benchmark functions and practical

real-world applications.

1.4 Research Questions

Based on the objectives outlined earlier, this study is structured around several research ques-
tions. By addressing these questions, the research aims to bridge theoretical knowledge with
practical efficacy, offering new perspectives and advancements in the optimization domain.

The following questions have been carefully developed to guide this investigation:

1. How can the exploration and exploitation capabilities of CSA and CapSA be enhanced

through the integration of novel operators?

2. What is the impact of implementing an adaptive migration policy on the performance

of cooperative island models in metaheuristic optimization?

3. What are the practical implications and performance outcomes of applying the pro-

posed models to real-world problems?

1.5 Significance of the Study

This study plays a pivotal role in advancing the field of optimization algorithms by signif-
icantly enhancing the capabilities of recent metaheuristic algorithms, particularly the CSA
and the CapSA. To make these algorithms more effective, the researcher has incorporated
novel operators that boost both exploitation and exploration potential, which are crucial for
successful optimization. A notable innovation in this thesis is the integration of these en-
hanced algorithms within the cooperative island model framework. The significance of the
research is further underscored by the introduction of a novel adaptive migration policy. This
policy dynamically adjusts the migration rate during the optimization process by taking into
account the population diversity and the fitness of each island. Such adaptability ensures a
more efficient search process and better optimization outcomes.

The efficacy of these proposed models has been extensively tested through a diverse
set of optimization problems, including real-valued mathematical benchmark functions with
varying characteristics. Initial evaluations have demonstrated the robustness and versatility
of the proposed enhancements. To highlight the practical applicability of the research more
prominent, the researcher has included specific examples of how the models have been ap-
plied to real-world problems. These applications include the training of neural networks for
classification, multilevel thresholding in image segmentation, and parameter optimization in
Software Reliability Growth Models (SRGMs). The results of these applications have shown
remarkable improvement and outperformed their traditional counterparts.

In conclusion, this thesis contributes significantly to the advancement of metaheuristic
optimization algorithms. By incorporating novel operators, an adaptive migration policy,
and a cooperative island model, we have developed models that are not only theoretically
sound but also practically applicable. The results of this study have demonstrated the value

of these models and their potential to outperform recent algorithms in most case studies.

1.6 Dissertation Organization

The dissertation is divided into six chapters, including the introduction. The remaining chap-
ters are organized as follows: Chapter 2 provides a theoretical background on MHs and dis-
cusses parallel approaches for MHs, with a particular focus on the cooperative island model
principles and their integration with MHs. In addition, it encompasses a thorough review
of related works on CSA, CapSA, and island-based MHs models. Chapter 3 explains the
methodologies used to enhance CSA, CapSA, and introduces the novel adaptive migration
policy. Chapter 4 presents experimental results for the proposed algorithms, tested on mathe-
matical real-valued functions and practical applications, including how to adapt the proposed
optimization model for addressing these practical applications. Following Chapter 4, Chap-
ter 5 is dedicated to the discussion of the results obtained. This chapter provides an in-depth
discussion and interpretation of the experimental outcomes, acknowledges limitations, and
offers insights into the implications of the research findings. Finally, Chapter 6 concludes
the study by summarizing the findings, offering recommendations, and suggesting further
exploration in the field. A visual roadmap in Figure 1.1 illustrates the structure of the thesis

and outlines the flow and key components of each chapter.

10

Neural Network
Training

Image
Segmentation

Software
Reliability Growth
Models

Review of Related
Works on CSA

Review of Related
Works on CapSA

Review of Island-
Based MHs models

Testing on
Mathematical
Functions

Real Applications

Introduction

Theoretical
Background

Literature
Review

Methodology

Experimental
Results

Discussion of
Results

Conclusion
and Future
Work

Figure 1.1: Visual roadmap of dissertation structure

11

Overview of MHs

Parallel
Approaches for
MHs

Island Model
Principles

Research Design
Proposed
Enhancements

Adaptive
Migration-Based
Island Model

Discussion

Limitations

Implications

Enhanced CSA
(ECSA)

Enhanced CapSA
(ECapSA)

Chapter Two: Background and Literature Review

To provide a solid basis for a thorough investigation in this thesis, the following structure
has been formulated to clarify the techniques and models that support the suggested opti-
mization strategies. An introduction to MHs is given in Section 2.1, emphasizing their signif-
icance in solving optimization problems and outlining their role in computational problem-
solving. Section 2.2 presents the parallel approaches used in the development of parallel
MHs. Finally, Section 2.3 explains the principles of the cooperative island model, outlining

its structure, utility, and application in enhancing algorithmic performance.

2.1 Metaheuristic Algorithms: An Overview

The applications of optimization are vast and varied. In fact, many complex problems in
real-life situations, such as those in science, industry, and engineering, can be formulated
as optimization problems. However, most of these problems are intractable and cannot be
solved efficiently using exact methods. Therefore, approximate algorithms have emerged as
a promising alternative to handle these kinds of problems [11]. Approximate algorithms are
generally categorized into two groups: specific heuristics and MHs. Specific heuristics are
designed to tackle particular problems and are thus problem-dependent. In contrast, MHs
are problem-independent (or general-purpose) approximate algorithms developed to handle
a wide variety of optimization problems, especially those of a combinatorial nature [65].
MHs are a class of stochastic optimization methods that employ a degree of randomness
to find a high-quality, near-optimal solution within an acceptable timeframe. According to
[66], MHs are search algorithms that coordinate the interaction between local improvement
procedures and higher-level strategies to form an efficient search process. These algorithms
can escape local optima and conduct a robust global search, thereby reducing the effective
size of the search space by exploring promising regions effectively. As a result, MHs con-
tribute to three main goals: handling problems more rapidly, managing large-scale problems,

and developing powerful (robust) algorithms [11].

12

2.1.1 Exploration and Exploitation Mechanisms

Exploration and exploitation are two fundamental mechanisms in MHs that balance the pro-
cess of discovering new solutions (exploration) and optimizing known solutions (exploita-
tion). Effective MHs manage a trade-off between these two strategies to efficiently navigate
the solution space and avoid premature convergence to suboptimal solutions [67].

Exploration refers to the algorithm’s ability to investigate diverse areas of the search
space, thereby reducing the risk of missing the global optimum. It’s essential for identifying
promising regions that haven’t been visited before. For instance, a random walk introduces
randomness in solution selection, allowing the algorithm to explore new areas of the solu-
tion space. This is evident in Simulated Annealing (SA), where the probability of accepting
worse solutions decreases over time but initially allows for broad exploration [68]. On the
other hand, exploitation involves intensively searching around the current best solutions to
refine and improve them. It’s crucial for fine-tuning solutions and converging to the optimum
in a reasonable time. For instance, the crossover operator in GA combines parts of two good
solutions (parents) to produce potentially better offspring. This operator focuses on areas of
the search space where good solutions have already been found [69]. Figure 2.1 depicts the
exploratory and exploitative phases that an algorithm undergoes when attempting to solve
complex optimization problems with multiple local and global optima. The landscape de-
picted in the figure represents the solution space, and the algorithm explores it by sampling
various points and avoiding local optima. Once the algorithm identifies the most promising
areas, it intensively searches these regions to pinpoint the optimal solution, as indicated by
the paths converging on high peaks.

It is essential to strike a balance between exploration and exploitation to ensure the effec-
tiveness and efficiency of MHs across different optimization problems. An overemphasis on
exploration can lead to an inefficient search process, while an excessive focus on exploitation
can trap the algorithm in local optima. Empirical studies have established a strong correla-
tion between the exploration-exploitation dynamics of a search method and its convergence
rate [70]. Methods that prioritize exploitation can accelerate convergence towards the global

optimum but may become stuck in local optima. In contrast, methods that prioritize ex-

13

Figure 2.1: A visualization of exploration and exploitation in MHs [15]

ploration are more likely to discover regions containing the global optimum, although at a
slower convergence rate. Therefore, finding a balance between exploration and exploitation
is critical to guide the search process and achieve a thorough exploration while focusing on
exploitation to converge towards the global optimum [71]. However, addressing the explo-
ration and exploitation potentials of MHs has been a subject of debate among researchers in
recent years [70]. Determining the optimal rates of exploration and exploitation for an effi-
cient search process is challenging due to the varied search strategies employed by various
metaheuristic methods. Thus, designing an efficient search strategy requires a comprehen-
sive understanding of the mechanisms utilized by these methods and how they contribute to

the search process.

2.1.2 Classification of MHs

There are various classifications for MHs in the literature [44]. One way is to categorize them
based on the number of search agents used in each iteration. Another way is to classify them
based on their source of inspiration, which looks at the origins and conceptual foundations

of each algorithm. These categories will be examined in detail in subsequent sections.

14

2.1.2.1 Classification by Number of Search Agents

Within this framework, MHs are primarily classified into two distinct types: trajectory-based
and population-based algorithms [72], as illustrated in Figure 2.2. This classification depends

on the number of temporary solutions used in each step of the iterative algorithm.

[Metaheuristic Algorithms
Y
Trajectory-based Algorithms (TMHs) Population-based Algorithms (PMHs)
\ /
C N /' N
T (o] Simulated q o Particle Swarm
Hill ?’!;(r?)hlng Annealing Genetic Algorithm Optimization
(SA) (PSO)
C N /' N
Iterated Local P ST Differential Ant Colony
Search (18) Evolution Optimization
(ILS) (DE) (ACO)

Guided Local Artificial Bee
Search (GLS) Colony

(ABC)

Figure 2.2: Classification of MHs by the number of search agents, including representative
examples for each category

A) Trajectory-Based MHs

Trajectory-based Metaheuristics (TMHs), also known as single-solution-based metaheuris-
tics, are commonly referred to as local search algorithms. This class of algorithms begins
with an initial candidate solution and iteratively improves it while addressing optimization
problems. They can be conceptualized as ’search trajectories’ moving through neighbor-
hoods in the problem’s search area, employing iterative heuristic procedures [11]. Essen-
tially, two main procedures are applied to the current solution: generation and selection. In
the generation phase, a local search operator is applied to the current solution to generate a
set of solutions (S), while in the subsequent selection phase, the current solution is replaced
by a better-quality solution chosen from the generated set S. The pseudocode for a general
TMHs approach targeting a minimization problem is illustrated in Algorithm 1.

TMHs are prone to the challenge of premature convergence. This occurs when the algo-

rithm settles for a suboptimal solution too early without exploring more promising regions

15

Algorithm 1 Pseudocode of generic Trajectory-Based Metaheuristic

1: Input: ObjectiveFunction, Maxlterations, InitialSolution
2: Output: BestSolution

3: BestSolution < InitialSolution

4: CurrentSolution < InitialSolution

5: Iteration <0

6: while Iteration < Maxlterations do

7: NeighboringSolutions <— GenerateNeighbors(CurrentSolution)

8: CandidateSolution < SelectFrom(NeighboringSolutions)

9: if AcceptanceCriteria(CandidateSolution, CurrentSolution) then
10: CurrentSolution <— CandidateSolution
11: if ObjectiveFunction(CurrentSolution) < ObjectiveFunction(BestSolution) then
12: BestSolution <— CurrentSolution
13: Iteration < Iteration+ 1

14: Return BestSolution

of the search space. This limitation often stems from the nature of TMHs relying on a sin-
gle solution path, which can lead to a narrow search focus and make it difficult for these
algorithms to escape local optima. Moreover, TMHs might have trouble navigating very
complicated or multi-modal landscapes where there are multiple local optima. This could
lead to less stable performance, especially when problems need a lot of exploration to find
the global optimal. Additionally, the initial solution can significantly affect the efficiency of
TMHs. A poor starting point might lead the algorithm towards less optimal regions, thereby
impacting the overall solution quality.

Common examples of TMHs include Tabu Search (TS) [73], SA [68], Variable Neighbor-
hood Search (VNS) [74], Greedy Randomized Adaptive Search Procedure (GRASP) [75],
Iterated Local Search (ILS) [76], and Guided Local Search (GLS) [77]. Among these trajec-

tory algorithms, SA and TS are the most widely used in the literature [72].

B) Population-Based MHs

Population-based Metaheuristics (PMHs) are exploration-oriented algorithms, renowned for
their superior exploratory potential compared to trajectory algorithms. These algorithms op-
erate by generating and evolving a set of candidate solutions, known as the population. The
process continues iteratively until satisfactory results are achieved. One of the distinguishing
characteristics of PMHs is their ability to balance exploration and exploitation components.

This balance is crucial when dealing with complex problems as it helps to discover new and

16

potentially promising areas of the search space while intensifying the search around already

promising regions. The high-level procedure of PMHs is illustrated in Algorithm 2.

Algorithm 2 Pseudocode of generic Population-Based Metaheuristic

I: Input: ObjectiveF unction, MaxGenerations, PopulationSize
2: Output: BestSolution

3: Initialize a population of solutions of size PopulationSize
4: Evaluate each solution in the initial population using Ob jectiveF unction
5: BestSolution < best solution from the initial evaluation
6: Generation < 0
7. while Generation < MaxGenerations do
8: Generate New Solutions:
9: Apply operators (e.g., modification, combination) to create new solutions
10: Evaluate New Solutions:
11: Evaluate each new solution using Ob jectiveF unction
12: Selection:
13: Select solutions for the next generation based on fitness
14: Update Best Solution:
15: Update BestSolution if a new solution is better
16: Generation < Generation+ 1

17: Return BestSolution

2.1.2.2 Classification by Source of Inspiration

The categorization of MHs based on their source of inspiration is one of the most beneficial
and oldest classifications in the field of computational optimization [44]. This concept, which
is primarily rooted in natural or biological phenomena, has led to the development of several
nature-inspired algorithms. Various authors have categorized optimization algorithms based
on their source of inspiration [78, 79]. One common approach divides algorithms into four
categories: evolutionary-based, swarm intelligence-based, physics-based, and human-based
[80]. Evolutionary-based algorithms draw inspiration from principles of genetics and natural
evolution, while swarm intelligence algorithms are inspired by the group behavior of social
organisms. Physics-based algorithms utilize concepts and laws from physics, and human-
based algorithms are derived from human social and cognitive behaviors [81]. These diverse
sources of inspiration demonstrate the adaptability and effectiveness of these algorithms in
solving complex optimization problems. They also underscore the creativity and richness of
the field of MHs. The various categories of algorithms have been extensively researched,

each having its own distinct approach. However, the main focus of this thesis will be on

17

swarm intelligence-based algorithms that rely on the decision-making abilities of groups like
flocks of crows or groups of capuchins. These algorithms are designed to efficiently solve
optimization problems by emulating the collective intelligence and cooperative behaviors of
these groups. Figure 2.3 provides a visual representation of the taxonomy of MHs by the

source of inspiration, including representative examples for each category.

[Metaheuristic Algorithms }

! ! ! !

N

{ Evolutionar Algorithms J Swarm Intelligence Algorithms Physics-based Algorithms ‘ Human-based Algorithms
q n Particle Swarm Simulated Teaching Learning
GepcticAlgerithm Optimization Annealing Based Optimization

\ (PSO) (SA) (TLBO)

Evolution

Differential
(DE)

Y ———

Evolutionary Strategy

\

Genetic
Programming(GP)

Ant Colony
Optimization
(ACO)

Artificial Bee
Colony
(ABC)

Crow Search
Algorithm
(CSA)

Gravitational
Search Algorithm
(GSA)

Multi-Verse
Optimizer
(MVO)

Central Forces
Optimization
(CFO)

Brain Storm
Optimization
(BSO)

Volleyball Premier
League Algorithm
(VPL)

Human-inspired
Algorithms (HIAs)

Figure 2.3: Classification of MHs by the source of inspiration, including representative
examples for each category

2.1.2.3 Swarm Intelligence Algorithms

The term *Swarm Intelligence’ was coined by Beni and Wang in 1989 in the context of cel-
lular robotic systems [82]. Since then, SI has become a widely discussed topic in many
industries. According to Bonabeau [83], it can be defined as the collective intelligence of
simple agents working in a group. In the context of MHs, SI methods appear as coopera-
tive nature-inspired mechanisms that mimic the behavior of self-organized and decentralized
systems found in species such as bees, wasps, ants, whales, and fish [84]. These methods
are used to design optimization algorithms that leverage the exceptional features of swarm
behavior in nature. The algorithms rely on how swarm individuals communicate with each
other to reach a common goal. They perform searches based on their own cognition and
experiences as well as the information available globally among all individuals. Informa-

tion exchange occurs through various mechanisms such as pheromones in the case of ants,

18

sound waves in bats, and waggle dance in bees [85]. Researchers have also incorporated
other intelligence mechanisms to develop optimization algorithms with better explorative
and exploitative capabilities.

According to [11], SI-based algorithms are characterized by the simplicity and cooper-
ation of agents in moving through the decision space. The most common algorithm among
them is PSO, which was introduced by Kennedy and Eberhart in 1995 [86] and is inspired
by the flocking behavior of birds. In this algorithm, candidate solutions are represented by
a swarm of particles, each with a position (X) and velocity (V). The particles are modified
towards the best solutions so far by considering both their own local best position and the
global best particle position. The efficacy and simplicity of PSO have made it widely ap-
plicable in various fields and have served as the basis for developing many other SI-based
algorithms [87]. Some of other widespread SI algorithms are Ant Colony Optimization
(ACO) [88], Artificial Bee Colony (ABC) [89], Fish Swarm Algorithm (FSA) [90], and
Bacterial Foraging Optimization (BFO) [91]. Recently, many excellent and well-regarded
SI MHs have been proposed such as Harris Hawks Optimization (HHO) [92], Chimp Opti-
mization Algorithm (ChOA) [93], Whale Optimization Algorithm (WOA) [80], GWO [94],
MFO [95], Marine Predators Algorithm (MPA) [96], Slime Mould Algorithm (SMA) [97],
CapSA [98], and CSA [45]. A brief review of well-known MHs, categorized by their source
of inspiration, is presented in Table 2.1.

This study focuses on two recent and promising SI algorithms, the CSA and the CapSA.
Section 2.4 will provide an overview of these algorithms, detailing their inspiration and

mathematical foundations.

2.2 Parallel Approaches in MHs

Parallel computing involves the simultaneous use of multiple processors or computing re-
sources to handle large computational problems. To achieve this, a problem is divided into
smaller tasks that can be executed concurrently [134]. Parallel computing lies at the heart
of recent technological developments, especially in the design of distributed and multi-core

systems [51]. Many recent research papers advocate for the use of parallel computing to

19

Table 2.1: Overview of MHs based on the source of inspiration

Category | Algorithm Inspiration Year
Evolutionary Strategy (ES) [99] Biological Evolution Strategies 1960s
3 Genetic Algorithm (GA) [69] Natural Selection and Genetics 1975
é Genetic Programming (GP) [100] Biological Evolution and Genetics 1990s
g‘ Differential Evolution (DE) [101] Evolutionary Computing 1997
_§ Memetic Algorithm (MA) [102] Darwinian Evolution and Cultural Evolution Late 1980s
g Evolutionary Programming (EP) [103] Evolutionary Strategies of Finite State Machines 1960s
=) Gene Expression Programming (GEP) [104] Genetics and Natural Selection 2001
Biogeography-Based Optimizer (BBO) [105] Biogeography (Species Migration) 2008
Tabu Search (TS) [73] Human Memory Processes 1986
Cultural Algorithm [106] Sociocultural Evolution 1994
% Teaching-Learning-Based Optimization (TLBO) [107] Teaching-Learning Process 2011
ﬁ Brain Storm Optimization (BSO) [108] Human Brainstorming Process 2011
E Human-Inspired Algorithm (HIA) [109] Human Cognitive Processes 2009
ID Volleyball Premier League Algorithm (VPLA) [110] Strategies in Volleyball Game 2018
Gaining Sharing Knowledge based Algorithm (GSK) [111] gaining and sharing knowledge during the human life span 2020
Human Evolutionary Optimization Algorithm (HEOA) [112] | The process of human evolution 2023
Simulated Annealing (SA) [68] Annealing Process in Physics 1983
Central Forces Optimization (CFO) [113] Central Forces in Physics 2008
}3 Gravitational Search Algorithm (GSA) [114] Law of Gravity and Mass Interactions 2009
c‘l? Charged System Search (CSS) [115] Electrodynamics and Charged Particles Interactions 2010
é Multi-Verse Optimizer (MVO) [116] Concepts of White Hole, Black Hole and Wormhole in Universe | 2015
§ Henry Gas Solubility Optimization (HGSO) [117] Henry’s Law in Gas Solubility 2019
Thermal Exchange Optimization (TEO) [118] Thermal Exchange Processes 2017
Ray Optimization (RO) [119] Properties of Light Rays 2012
RIME optimization algorithm [120] physical phenomenon of rime-ice 2023
Ant Colony Optimization (ACO) [121] Foraging Behavior of Ants 1992
Particle Swarm Optimization (PSO) [122] Social Behavior of Birds and Fish 1995
Bacterial Foraging Optimization (BFO) [91] Foraging Strategy of E. coli Bacteria 2002
Artificial Bee Colony (ABC) [123] Food Foraging Behavior of Honey Bees 2005
Firefly Algorithm (FA) [124] Flashing Behavior of Fireflies 2008
Cuckoo Search (CS) [125] Brood Parasitism of Some Cuckoo Species 2009
3 Bat Algorithm (BA) [126] Echolocation Behavior of Bats 2010
& Grey Wolf Optimizer (GWO) [127] Social Hierarchy and Hunting Mechanism of Grey Wolves 2014
§ Moth-Flame Optimization Algorithm (MFO) [128] Navigation Method of Moths 2015
Eo Whale Optimization Algorithm (WOA) [80] Bubble-Net Hunting Strategy of Humpback Whales 2016
E Dragonfly Algorithm (DA) [129] Swarming Behaviours of Dragonflies 2016
= Crow Search Algorithm (CSA) [45] Food Searching Behavior of Crows 2016
E Grasshopper Optimization Algorithm (GOA) [130] Swarming Behaviour of Grasshoppers 2017
Harris Hawks Optimization (HHO) [39] Cooperative Hunting Strategy of Harris” Hawks 2019
Slime Mould Algorithm (SMA) [97] Oscillation Mode of Slime Mould 2020
Capuchin Search Algorithm (CapSA) [46] Behavioral Traits of Capuchin Monkeys 2021
Hunger Games Search [131] hunger-driven activities and behavioral choices of animals 2021
Moss Growth Optimization (MGO) [132] The moss growth in the natural environment 2024
Polar Fox Optimization Algorithm (PFA) [133] Hunting method of polar foxes 2024

20

reduce execution time and enhance memory usage. Furthermore, numerous researchers have
highlighted the importance of parallel computing in solving complex optimization problems
using parallel metaheuristic algorithms [135].

Parallel MHs represent a promising class of optimization algorithms that combine the
benefits of parallel computing techniques with MHs to address complex problems more ef-
ficiently, requiring less numerical effort and computational time. Essentially, the design of

parallel MHs targets three crucial objectives [11] [134] [136]:

* The first objective, a common goal within the parallel computing domain, is to solve
large-scale problems more rapidly than sequential methods can. This acceleration is
particularly valuable for developing algorithms suited to real-time applications, such

as critical control problems where time is a critical factor.

* Improving algorithm robustness is another significant advantage. Parallel MHs ex-
hibit greater robustness compared to their sequential counterparts, both in their ability
to efficiently tackle a wide array of optimization problems with diverse characteristics
and in their reduced sensitivity to parameter settings, thereby lessening the need for

extensive parameter-tuning efforts.

* Lastly, providing high-quality solutions is a key objective. Certain cooperative par-
allel models enable the collaborative use of multiple algorithms to solve a problem,
promoting information exchange, adapting the search pattern, and ultimately facilitat-

ing the attainment of high-quality solutions within a reasonable time frame.

Up to date, many researchers continue to employ traditional MHs for solving real, com-
plex optimization problems, attributed to factors such as the superior computational power
of Central Processing Unit (CPU) and extensive random Access Memory (RAM) capac-
ity. However, when addressing big data and real optimization challenges characterized by
complex search spaces, the efficacy of traditional MHs becomes constrained. Despite these
algorithms demonstrating commendable performance in terms of results, execution time and
memory usage pose significant challenges, particularly for problems with nonlinear (i.e.,

complex) search spaces [11]. To address these issues, a significant number of researchers

21

are investigating the use of parallel MHs with two major goals in mind: to reduce execution
time and to enhance the quality of solutions. The adoption of MHs in solving real-world op-
timization problems primarily aims to capitalize on these advantages, ensuring both efficient

computation and superior solution outcomes.

2.2.1 Design Models of Parallel MHs

It is worth noting that this study focuses on the design aspects of parallel MHs using general-
purpose parallel architectures rather than the implementation aspects of specific parallel ar-
chitectures (language, environment, middleware). From a design perspective, parallel MHs
can be conceptualized based on three parallel paradigms: the algorithmic level, iteration
level, and solution level models [11] (Figure 2.4). These models are characterized by their
granularity ! (i.e., the level of parallelism). Table 2.2 summarizes the main characteristics of
these three significant parallel designs for MHs. The following subsections provide a general

overview of the design strategies that can be applied to most metaheuristic algorithms.

Algorithmic-level Iteration-level Solution-level
Sequential algorithm . ; parallel handing of solution Parallel handing of a
cooperation model . . i
or popufation single solution

individual PN
7 Node 1
N b Functional or data
: : z@_’j partitioning

Exchange informati

Figure 2.4: Representation of parallel design models of meta-heuristics

Table 2.2: Design models of parallel metaheuristics

model Granularity metaheuristic behavior problem dependency Objective example
solution-level solution unaltered dependent efficiency data partitioning
iteration-level iteration unaltered independent efficiency evaluating neighbors
Algorithmic-level metaheuristic altered independent effectiveness island model

'In parallel computing, granularity refers to the amount of computation performed by a task [137]

22

2.2.1.1 TIteration_Level Parallel Model

The iteration-level parallel model, known as functional parallelism, refers to executing the
algorithm itself in parallel to reduce the execution time while exploring the search space.
In this strategy, parallelization is leveraged to accelerate computing-intensive parts of the
metaheuristic without altering the search space, sequence, or behavior of the original algo-
rithm [11] [47]. This strategy is considered low-level and problem-independent. Typically,
it can be adapted for both TMHs and PMHs, wherein the original sequential logic of the
algorithm is maintained while the resource-consuming parts are decomposed and executed
in parallel. Generally, MHs are iterative algorithms; hence, inner-loop components are the
primary sources for achieving significant parallel computing gains. Examples include the
generation and evaluation of neighborhoods for TMHs and the handling and evaluation of
individuals for PMHs. Recently, high-performance Graphics Processing Units (GPUs) have
been extensively exploited for the functional parallelism of MHs. This provides a suitable

environment to effectively reduce computation time [134].

2.2.1.2 Solution-Level Parallel Model

The solution-level parallel model refers to evaluating and building the solution in parallel
(i.e., it is problem-dependent). In most real optimization problems, the problem-dependent
search operations applied to solutions, such as the evaluation of objectives and constraints,
are resource-consuming in terms of time, memory, and input/output operations [47]. To ad-
dress this, two strategies can be applied: functional decomposition and data partitioning.
The former strategy involves partitioning fitness function(s) and/or constraints into partial
functions evaluated simultaneously. The partial results are then combined to produce the
final result using a reduction operation [11]. In a data-oriented partitioning scheme, paral-
lelism occurs at the level of data required by the objective function. For instance, evaluating

candidate solutions may require accessing a vast database that cannot fit on a single machine.

23

2.2.1.3 Algorithmic-Level Parallel Model

An algorithmic-level model refers to executing a set of self-contained MHs, either indepen-
dently or cooperatively, to tackle the optimization problem, also known as a multi-search
model. Executing MHs independently is, in terms of solution quality, equivalent to running
them sequentially. However, a cooperative model adapts the MHs’ behavior to yield better-
quality solutions. The independent algorithmic-level strategy, one of the earliest multi-search
models proposed in the literature [64], is recognized for its simplicity and straightforward
design, often enhancing the robustness of the algorithms considered [134]. This approach
employs multiple classical optimizers, utilizing either the same or different search methods
simultaneously across the entire search space. In this model, optimizers may have identical
or varied populations and share common parameters (e.g., population size, stopping crite-
ria) and internal parameters (e.g., selection, mutation, and crossover probabilities for EAs).
Ultimately, the best result from all optimizers is selected. This model has demonstrated
effectiveness across various combinatorial optimization problems. For example, Kennedy
[138] presented a non-cooperative parallel variant of PSO, dividing the main swarm into
sub-swarms using the K-means clustering technique, evolving independently without co-
operation. Other independent multi-search strategies were introduced by [139] [140], with
more examples in [64].

In contrast, the cooperative algorithmic-level model involves algorithms cooperating by
exchanging search-based information, which, although more complex to design than the in-
dependent parallel system, shows superior performance. It has emerged as a highly effective
methodology for complex optimization problems [141] [51] [142] [56] [47]. The cooperation
mechanism during the search process benefits from new information to alter search behavior,
explore the search space more effectively, and find better (or near-optimal) solutions. Coop-
erative model techniques for MHs vary based on several factors, including communication
mechanisms and the nature of the exchanged information. Design considerations such as
when and where information is exchanged, what information is exchanged, and how it is
integrated into the search process are crucial in developing these models [47]. These aspects

are further discussed in Section 2.3.

24

Among these models, the island model has proven remarkably effective and has become
more reliable for use with MHs. In recent years, it has gained prominence as a preferred
parallel design strategy for handling various types of combinatorial optimization problems
[11]. Therefore, this study focuses on the island-based MHs and the modern studies that

have dealt with it. Section 2.3 presents the fundamentals of the basic island model for MHs.

2.3 Fundamentals of Cooperative Island-Based Model

In the cooperative MHs-based optimization paradigm, the utilized algorithms collaborate
by exchanging search-based information. Cooperative algorithmic models perform better
than independent-level models. It has become one of the best methodologies for tackling
challenging optimization problems [141, 47]. The cooperation mechanism aims to gain from
the shared information throughout the search process in order to change the search behavior,
explore the search space more thoroughly, and ultimately discover better (or nearly optimal)
solutions. In general, there are different ways to differentiate between cooperative model
strategies for MHs based on the communication method and the type of information being
shared [47]. The three main types of cooperative MHs models are the master-slave model,
the cellular model (also known as fine-grained), and the island model (also known as coarse-
grained) [51]. The island model has emerged as one of the most successful and trustworthy to
employ with metaheuristic algorithms. It has gained prominence in recent years as a favored
parallel design approach for resolving many kinds of combinatorial optimization problems
[11].

The island model is regarded as one of the most successful structured population tech-
niques for dividing the population into a number of subpopulations, each of which is termed
an "island" [49]. This method is useful for empowering the capabilities of evolutionary al-
gorithms by boosting aspects of diversity. In this paradigm, the evolutionary algorithm is
iterated on each island, either synchronously or asynchronously [143]. The island model
mainly comes in two variants: homogeneous and heterogeneous [144]. Each island in the
heterogeneous model has its unique configurations, as well as its own search method. For

instance, in an island-based Genetic Algorithm (iGA), each island may be set up with a dis-

25

tinct crossover or selection strategy. In the homogeneous paradigm, the same configurations
and search methods are embedded with each island.

The flow of information between the partitioned islands is managed by the periodically
recurring migration process. In simple terms, after a certain number of iterations, some
chosen solutions will migrate across some islands [59]. Such a technique might enhance
the algorithm’s performance as it facilitates exploring diverse areas of the search space. The
distribution of individuals with a wide range of fitness values throughout the various islands
may help the algorithm arrive at a globally optimal solution [143]. A number of migration
factors should be given priority when incorporating the island model into the optimization
framework of any population-based algorithm. These factors include the communication
topology, the migration rate, the migration frequency, and the migration policy [145, 53, 59].

Details and the relevance of these factors will be discussed in the following parts.

2.3.1 Interconnection Topology

The logical connections between the cooperating algorithms (or islands) construct a commu-
nication network. Within this network, each node represents an island, and the edges indicate
the pairs of islands that might exchange their search information [11]. Therefore, the utilized
topology defines how the islands are interconnected and determines the neighbor(s) for each
island. The optimization quality is substantially impacted by the type of topology. Several
migration topology structures have been presented in the literature, including star topology,
grid topology, ring topology, and complete graph topology [146, 147, 148]. Nevertheless,
the ring topology is becoming increasingly prevalent, and encouraging results have been
gained through its utilization [57, 55]. The idea of migration topology may be classified
into two subcategories: static and dynamic. In static typologies, the route of information
exchange between neighboring islands and the related links is predefined and remains con-
stant through the population evolution process. When a static topology is applied, there is
a higher chance of diversity loss since the information exchange method follows a repeated
pattern. In contrast, the destination island in dynamic topology changes arbitrarily with each

algorithm run, thus preserving it to some extent. [143]. Figure 2.5 depicts the structure of

26

a directed random-ring topology where the viable route connecting the islands is randomly

established

Individual Migrants

Algorithm
populat\ion

Randomring (4,2,1,3,5)

Figure 2.5: Migration process among algorithms using random ring topology [57]

2.3.2 Migration Rate

Another important component of the migration process is the migration rate (M,). It defines
the percentage of individuals that will migrate from one island to another. The choice of
M, value is crucial since a small number can affect how well algorithms cooperate while a
large value can reduce the diversity of the search process which leads to a high probability of
early convergence (i.e., the majority of sub-populations may converge to the same solutions)

[149].

2.3.3 Migration Frequency

It is necessary to precisely select when to exchange the search-based information. As a re-
sult, migration frequency (My), a predetermined number of iterations, is frequently used to
regulate the migration procedure. The number of rounds between each successful informa-
tion swap between neighbor sub-populations is controlled using this value. The effectiveness
of the cooperative model as a whole is significantly influenced by the value of the migration
frequency [150]. Therefore, it’s crucial to choose the right value for this parameter; for

instance, when M is large, the islands prefer to evolve independently [11, 47].

27

2.3.4 Migration Policy

The migration policy specifies which individuals will be migrated from the source island
(i.e., the selection strategy) and where they will be placed on the destination island (i.e., the
replacement strategy) [145]. There are two widely used policies in the relevant literature: the
best-worst policy and the random-random policy. The best-worst strategy involves selecting
the fittest individuals from the source island to replace the worst individuals on the target
island [58]. The random-random policy is implemented by choosing random members from
the source island to be swapped with random members on the target island. However, the
best-worst approach is the most prevalent migration policy in the literature [59, 57, 55, 56].
In contrast to the random-random policy, which has little impact, the best-worst policy has a
significant impact on the optimization performance of island models [151].

It is worth mentioning that the performance of the island model is significantly impacted
by the migration-based parameters that were discussed previously. As a result, they need to
have the right tuning in order to provide high-quality solutions in a reasonable amount of

time [59].

2.3.5 Formulating the Island Model for Population-Based MHs

This section outlines the general procedural steps for integrating the island model with a
population-based metaheuristic algorithm (denoted as Z). Initially, the generated popula-
tion of size (N) is divided into smaller sub-populations of number (s), each comprising a
set of size (I; = N/s) individuals. Assuming a homogeneous model where the same search
algorithm is applied to each sub-population, each algorithm operates for several predefined
maximum iterations. The migration process is initiated periodically after a predefined num-
ber of iterations, identified by the migration frequency (M) parameter. When the migration
process is triggered, several selected individuals (migrants) defined by the migration rate
(M,) are transferred to neighboring islands The process diagram is illustrated in Figure 2.7.

The detailed steps are presented as follows:

* Step 1: Initialize the internal parameters of algorithm Z (such as mutation, crossover,

and selection probabilities for GA), common controlling parameters (population size

28

(N) and maximum number of iterations (itr)). In addition, the parameters of migration
model should be initialized: number of islands (s < N), island size I, = N /s, migra-
tion frequency (My), migration rate (M,) where M, .I; < I; , design of communication

topology, selection and replacement strategies.

Step 2: Generate the initial population randomly. In this step a population of candidate
solutions X = (x1, x2, x3, X,) are usually generated randomly, where each candidate

solution (x;, where j € (1,2, 3,4, N)) is determined using Eq. (3.9).
X=X, +r(Xy—X,) 2.1)

where X ; and)?U are the lower and upper bound for the problem dimensions.

Step 3: Divide the generated population into s islands each of size ;. For instance,
let N =12, s = 4, then I; = 3. Assuming that X = (x3, x1, x5, X12, X8, X7, X2, Xg, X9,
X10, X4, x11), then island1 = (xl, X12, XQ), islandz = (X4, X8, X2), island3 = (X7, X11» x6),
and islandy = (x10, X5, x3). Note that each solution is assigned to a random island (see

Figure 2.6).

Step 4: Evolve the islands in parallel. In this step, each island is evolved using the

operators of the original algorithm Z.

Step 5: Migration process. This process is triggered periodically after a predefined
number of iterations as specified by (M) parameter. A commutation topology (e.g.,
bidirectional ring topology) is generated randomly to interconnect the islands (i.e.,
identify the neighbours for each island). Then, a percentage of selected individuals
from each island, controlled by (M,) parameter, are transferred between the connected
islands. The swapping process among every two neighbouring islands is executed

based on the selection-replacement strategy (e.g., best-worst strategy).
Step 6: Memorizing the best solution obtained so for in each island.

Step 7: Repeat steps 4, 5, and 6 until the stop condition (e.g., maximum iterations is

reached) and return the best solution found in all islands.

29

Island #2

Initial
Population

=B &

Island #3

Island #1

Island #4

Figure 2.6: Example of population segmentation in an island model framework (N = 12,
s=4,1,=3)

Perform Migration process

=)
]

periodically as described in step 5
Set the initial param eters (internal 3
algorithm setfings, migration Yes
param eters)
- Memonze the best solution in each
G enerate the intial population of idand
size Nrandom Iy
Y
Y Evolve islands in paraflel using the Ttr ++
Divide the population into (5 original algorithms
islands of each size N/ x
yes
Y

a
%

Itr=1 =</t,m\

No
¥

eturnthe best solution X*
obtained by all islands

Figure 2.7: The general process diagram of the island-based parallel mechanistic

30

2.4 Literature Review

This section provides a thorough overview of the literature about two distinct MHs: CSA
and CapSA. These algorithms have gained significant attention in the field of optimization
due to their unique search methods inspired by the intelligent foraging behavior of crows
and capuchin monkeys, respectively. The review focuses on the modifications, hybrid mod-
els, and innovative approaches proposed to enhance the original algorithms and overcome
some of their limitations, such as early convergence and balancing exploration and exploita-
tion. Additionally, the chapter introduces a systematic review of the island model and its
application to MHs, which enhances their search capabilities by maintaining diversity and
parallel exploration. Moreover, the chapter emphasizes the practical use of these improved
algorithms and their effectiveness in solving real-world problems in various fields. The main
objective of this comprehensive review is to analyze the current status of research in this
field by highlighting advancements, applications, and unexplored directions. It also provides
a foundation for further research that enables researchers to position their novel contributions

within the existing landscape of MHs and island-based models.

2.4.1 Overview of the Standard Crow Search Algorithm

This section provides an overview of the original CSA; inspiration and the mathematical
model. Askarzadeh [45] developed a unique metaheuristic algorithm called CSA that mimics
crows’ foraging behavior. The crow is considered to be one of the most clever birds due to
its ability to recall where food has been concealed for an extended period of time. It often
conceals the additional food and then retrieves it when it is required. In addition to this, it
will imitate the behavior of other crows in order to steal food and will utilize the knowledge it
has gained as a thief in order to deter other crows from committing theft. The primary source
of inspiration for CSA was the search technique employed by crows to hide their extra food
and then retrieve it at the appropriate moment. The four guidelines listed below, as proposed

in [45], realize the fundamental CSA presumptions:

31

Crows live in flocks in nature.

* Crows are able to remember the areas where they hide their food.

The activities of crows tend to be cooperative since they follow each other to do thiev-

ery.

* Crows may self-manage to preserve their unseen food, where they can protect their

hideouts from theft by a percentage.

In light of the aforementioned intelligent behaviors, the evolutionary process of CSA is
mathematically represented as follows: It is presumed that there is a d-dimensional search
space that contains a number of crows. The number of crows, also known as the population
size, is denoted by N. The location of each individual crow i at a certain time (iteration) ¢
represents a candidate solution to the problem of interest and can be defined by a vector X; ;

as shown in Eq (2.2).

it it it it
Xit = |X], %5 ,X3 ...xd] 2.2)

where (i = 1,2,,...,N), (t = 1,2, ...tiax), Lnax 18 the maximum number of iterations, d is the
problem dimension, and xé denotes the dth dimension of the ith crow. Accordingly, the
whole population of crows X (as shown in Eq. (2.3)) is initially positioned randomly in the

d-dimensional search space. These are the potential solutions to the problem at hand.

-1 1 1 l-
Xl X2 X3 Xd
2 2 2 2
X X X e X
1 2 3 d
X= 2.3)

It is common knowledge that every individual crow possesses a memory that allows it to
remember the specific location of its hiding place. Therefore, upon iteration ¢, m; ; (as shown
in Eq. (2.4)) denotes the position of the hiding place of crow i. In alternative words, this is

the best-visited position that crow i has attained so far. Each crow has, in fact, memorized

32

the location of its finest experience. Therefore, crows in CSA move and look for better
food sources in their surroundings (i.e., hiding places). Since the crows are completely
inexperienced at the beginning, it is presumed that they have concealed their food in their

starting locations.

it it it it
miy = |my ,my ,ms ..m; 2.4)

The exploratory and exploitative potentials of the CSA are achieved according to two
behaviors: pursuit and evasion [152]. In specific, assume that during iteration ¢, the crow j
wishes to go to its hiding location m; ;. Crow i makes the decision to follow Crow j and get

closer to its hiding location in this iteration. Two states might occur in this scenario:

* Pursuit behavior: A crow i pursues crow j in an effort to approach to its hidden
place. The goal of crow i is accomplished since the crow j is unaware of the other

crow’s existence. In this case, the new position of crow i is modeled using Eq. (2.5).

Xis1=Xig+ 1% flig x (mj, —Xiy) (2.5)

where X;; and X; ;| represent the current and new positions of crow i, respectively, r;
is a uniformly distributed random number within [0,1], f;; is the flight length of the
crow i at iteration ¢, which has an impact on the exploitative and exploratory potentials
of the CSA. m;j, refers to the best position so far of the crow j (i.e., the memorized

position of the hiding place of crow j).

The schematic of this condition and the impact of flight length f/ on search-ability
are shown in Figure 2.8. Local searches (at the vicinity of X; ;) are facilitated by low
values of fI, whereas global searches (far from X; ;) are facilitated by high values. The
next location of the crow i is on the dashed line between X;; and m;, if the value of f1
is chosen less than 1 (as shown in Fig. 2.8(a)). Whereas, the next location of the crow
i is on the dashed line, which may surpass m; , if the value of fI is picked greater than

1 (as shown in Fig. 2.8(b)).

* Evasion behavior: Crow j is aware that crow i is following it and thus consciously

33

Crow j

-

new position of crow i p
@ mj,t

» O

Xi1= Xie +0 * f1* (M= Xi o)

(@ fi<1
Crow i Crow j
»‘ *n: new position of crow i
O — — — — — — —@— — —
4
Xits1= Xie +i * fI* (e — Xi)
(b) fi>1

Figure 2.8: The schematic Pursuit behavior in CSA [153]

chooses a random trajectory to trick crow i and thereby protect its food. In CSA, this

phenomenon is replicated by employing a random movement as given by Eq. (2.6).

Xis+1 =LB+r;x (UB—LB) (2.6)

where LB and UB represent the lower and upper bounds of the decision variables,

respectively.

An awareness probability factor (AP) determines the kind of activity that each crow i will
consider. A uniformly distributed random number r inside (0,1) is therefore sampled. If r is
larger than or equal to AP, pursuit behavior is used; if not, an evasion scenario is selected.

The following model neatly describes this process:

Xis+rix fligx (mj; —Xiz) rj> APy
Xit+1 = (2.7)

random otherwise

where AP, ; refers to the awareness probability of crow j at iteration #. After the crow has

been modified, its fitness is assessed, and the memory vector is updated as follows:

34

Xit+1 F(Xis41) is better than F(m;)
Mg = (2.8)

m;, otherwise

where F(.) represents the objective function to be optimized. Figure 2.9 depicts the flowchart

of the standard CSA.

‘ Start)

Y

Initialize the problem & CSA
parameters (N, Tpay FI and Ap)
+ Ye No
Generate the initial CSA l l
population randomly ves |Update the i crow using Update the i'" crow using
+ Eq. 4 Eq. 9
Initialize the memory of crows v
Keep new positions if they are
+ feasible
Assess the fitness of each crow v
using evaluation functioin
Assess the fitness of new positions
¢ Using evaluation function
Xpest = The optimal position so far +
¢ Update the memory of crows
t=1 2
Update the best solution Xpes
Return the best
solution Xpes €No @ ¢
v t=t+1
End

Figure 2.9: Flowchart of the standard CSA

The exploration (diversification) and exploitation (intensification) offered by any meta-
heuristic algorithm ought to be well-balanced [11]. In CSA, the awareness probability value
primarily dominates how CSA controls intensification and diversification. By lowering the
AP value, CSA is more likely to focus its search on a local area when a good solution is
already present there. As a consequence, intensity is increased by employing modest AP
values. On the other side, when the AP value increases, it becomes less likely to search

the vicinity of current good solutions, and CSA is more likely to broaden its search area

35

(randomization). Therefore, using high AP values enhances diversity [45].

Compared to its competitors, the CSA offers several advantages. It is relatively simple
to implement, has a shorter run-time, involves fewer mathematical equations and control
settings, and exhibits strong space exploration capabilities [63, 30]. Moreover, it incorporates
a built-in control strategy that automatically switches between exploration and exploitation
phases. Consequently, it has been successfully applied in various engineering applications,
including DNA fragment assembly, image processing, feature selection, power distribution

network optimization, and economic load dispatch [81, 154].

2.4.2 Overview of Capuchin Search Algorithm (CapSA)

A novel metaheuristic called CapSA was developed by studying the natural behavior and
daily routines of capuchin monkeys as they foraged for food in the wild. According to Braik
et al., [46], the most interesting fact regarding the social behavior of capuchin monkeys is
that they employ three excellent maneuvers to move about when foraging on trees, river-
banks, and ground, namely jumping, swinging, and climbing. These facts form the basis of
CapSA’s fundamental assumptions. The CapSA algorithm, like other swarm intelligence-
based algorithms, is classified under the umbrella of population-based algorithms. It starts
by randomly initializing a preset number of individuals (i.e., capuchins). Each capuchin
represents a possible solution to the problem being addressed. The mathematical represen-
tation of CapSA’s evolutionary process is as follows: Several N capuchins are assumed to
be distributed over a d-dimensional search space. N is often referred to as population size.
A possible solution to the problem of interest may be determined by the location of each

capuchin individual i at a specific moment (¢), which can be described as a vector:

Each individual is also characterized by its velocity:

17971

Vi(t) = [v},v2 v?..vﬂ

36

where (i =1,2,,...,N), (t =1,2,...T), T is the maximum number of iterations, d is the
number of variables of a test problem, and xil denotes the dth dimension of the ith capuchin.
The whole population of capuchins X and the corresponding velocities V are initially posi-
tioned randomly in the d-dimensional search space.

Capuchin swarms often consist of two categories of individuals: (1) leaders, also known
as alphas, who are responsible for finding new food sources, and (2) followers, who are in

charge of updating their positions by following the group’s leaders.

2.4.2.1 Leaders Updating Rules

The community’s leaders employ five distinct mobility strategies to locate food during the
evolutionary process. A random number named € is generated to determine operation selec-

tion as follows:

* Jumping on trees (i < N/2;0.1 < &€ <0.15): In this situation, alpha capuchins can be

positioned using the following updating rule:

P;,f(v,-)zsin(ZG))

Xi(t+1) = gbest + (
8

(2.9)
where the variable gbest denotes the current optimal position of the food source, while
€ refers to a randomly generated number in the range of O to 1. P, represents the
probability of the capuchin monkey’s tail providing balance during the jumping pro-
cess. The velocity of the ith capuchin, denoted as v;, is computed using Equation
(2.10), with g being the gravitational acceleration constant set to 9.81. The jumping
angle, denoted as 0, is calculated as 1.5 x r, where r is a uniformly distributed random

number between 0 and 1.

Vit+1) = pv,-(t)+a1<pbest,'—x,~(t)>r1

+ a <gbest — x,(t))) (2.10)

37

where pbest refers to the best position so far of the ith capuchin. The factors a; and a;
govern the influence of the individual best position (pbest) and the global best posi-
tion (gbest) on the capuchin’s velocity. The random variables r| and r, are uniformly
distributed in the interval [0, 1]. The inertia coefficient p determines how much the
previous velocity affects the current motion, and in this study, it is decreased during it-

erations using Equation (2.11) to regulate the search for either local or global solutions.

t

P = Wiax — (Wmax_wmin)(?)z (2-11)

where wy,, and wy,;,, take values of 0.8 and 0.1, respectively.

Jumping on the ground (i < N/2;0.15 < € < 0.3): Capuchins employ this behavior
to travel long distances, especially when food is hard to come by on the trees. The new
position of the leader and following capuchins in this instance may be determined as

follows:

PeyPyy(vi)*sin(26)) (2.12)

Xi(t+1) = gbest + (
8

where P, ¢ stands for the elasticity probability of the capuchin movement on the ground.
Normal walking on the ground (i < N/2;0.3 < € <0.9): In this case, the leaders’

position can be updated as follows:

X,-(t+1):x,'(t)—l—v,-(t+l) (2.13)

Swinging on the trees (i < N/2;0.9 < € < 0.95): While looking for food on tree
branches, certain alpha capuchins and other accompanying capuchins may employ

local search. The following rule was used to simulate this behavior:

Xi(t+1) = gbest + Py x sin(20) (2.14)

Climbing trees (i < N/2;0.95 < € < 1.0): Certain alpha capuchins and other fol-
lowing capuchins may repeatedly ascend and descend trees and their branches in a

manner akin to local search. Specifically, the following rule can be used to update the

38

capuchins’ location:

Xi(t+1) :gbest+P,,f(v,~(t+ 1) —v,(t)) (2.15)

Random migration of the capuchines (i < N/2;& < 0.1): Capuchin monkeys engage
in random migration during food foraging, wherein they search for food in various di-
rections to more efficiently explore their surroundings in search of better food sources.

The process of random migration is modeled using Eq. (2.16)
Xi(t+1)=1x |[LB+rx (UB—LB) (2.16)

where LB and UB represent the lower and upper bounds of the decision variables. Ca-
puchin monkeys have a 0.1 probability of engaging in a random search. This strategy
enhances CapSA’s capacity to explore globally and reduces the likelihood of getting
stuck in local optima. In CapSA, an exponential function with a lifetime parameter (7)
was introduced to balance exploration and exploitation during global and local search

processes. This function is represented by Eq.

1)2

T=2¢ 11z (2.17)

In summary, according to Eqs. (1) through (9), the capuchin monkeys adjust their
positions based on the presence of food. This behavior is especially noticeable when
r > 0.1. However, if r < 0.1, the capuchin monkeys tend to change their positions
randomly to explore different areas for food. In such instances, the parameter 7 can

expand the exploration space for searching.

2.4.2.2 Followers Updating Rule

The positions of the followers (i.e. N/2 <i < N) are updated according to the follow-

ing formula, which is derived from Newton’s law of motion:

xi(t+1) = = (x;(1) +xi-1 (1)) (2.18)

| =

39

where x;(¢) and x;_1(¢) are the positions of the i-th follower and the (i — 1)-th follower
in in the previous generation. The original paper describes the comprehensive steps

and the complete mathematical model utilized to derive this formula.

The CapSA technique has shown to be effective in various fields such as optimizing
renewable energy sources [155, 156], machine learning and data analysis [156, 157], com-
puting and network systems [157, 158], industrial processes [159], and economic modeling
[159]. This is because the method provides a good balance between exploration and exploita-
tion, making use of both local and global search strategies. Its straightforward and intuitive
design makes it easy to understand and use. Furthermore, the algorithm features a dynamic

balance factor that helps to preserve population diversity during the search [160].

2.4.3 Recent Advancements in the CSA

The CSA has garnered significant research interest, as it has proven to be a versatile tool
for optimizing a wide range of problems [161]. To further enhance its performance, re-
searchers have made modifications and hybridization with various optimization techniques.
In a comprehensive review by Hussien et al. [81], CSA variants were categorized into three
classes: modified CSA, hybrid CSA, and multi-objective CSA. While there exist numerous
effective applications of CSA, this section highlights a few notable state-of-the-art research
endeavors. One remarkable contribution is the development of a binary CSA (BCSA) by
Al-Thanoon et al. [162], aimed at improving classification performance through the selec-
tion of appropriate features. In BCSA, the concept of the opposition-based learning method
is employed to determine the flight length parameter. Experimental results demonstrated
the superior performance of this technique compared to alternative mathematical methods
in terms of relevant feature selection for both datasets. Addressing the premature conver-
gence issue in the original CSA and tackling the feature selection problem in packing mode,
Chaudhuri and Sahu [163] proposed the binary CSA with time-varying flight length (BC-
SATVFL). This variant dynamically adjusts the flight length parameter over time, mitigating
premature convergence. This approach proved effective in addressing the feature selection

problem. In another study, Eliguzel and ozceylan [164] effectively employed an enhanced

40

version of CSA, called I-CSA, to solve the P-median problem. The proposed approach
utilized discretization, local search techniques, and an elitism strategy to improve the algo-
rithm’s performance. Through these enhancements, I-CSA demonstrated promising results
in solving the P-median problem. These aforementioned research efforts exemplify the di-
verse applications and advancements in the field of CSA, showcasing its potential for solving
complex optimization problems.

Grisales-Norina et al. [165] proposed an efficient master-slave methodology using the
CSA to integrate photovoltaic generators into DC grids, minimizing operating costs. Nu-
merical results demonstrate the approach’s applicability, efficiency, and robustness com-
pared to other methodologies. Braik et al.[166] propose a Memory-based Hybrid CSA
(MHCSA) by combining CSA with PSO. MHCSA enhances CSA’s memory representation
and exploration-exploitation balance, outperforming CSA, PSO, and other methods in accu-
racy and stability across various benchmarks. However, the study lacks in-depth analysis of
the hybridization impact and its adaptability to various problem domains, leaving room for
further research. Kumar et al. [167] proposed a novel approach combining stacked autoen-
coders and the CSA for community detection in complex networks. Their method utilizes
modularity matrix reduction and a modified k-means clustering algorithm with CSA-based
optimization. The extensive experimental analysis demonstrates the effectiveness of the pro-
posed method compared to traditional and contemporary community detection algorithms.
Bai et al. [168] proposed a topology optimization protocol for the Internet of Things (IoT)
perception layer, leveraging an improved CSA named Cauchy variation optimization CSA
(CM-CSA). They also introduce an enhanced clustering approach using Cauchy mutation
to address CSA’s convergence speed limitations. The proposed CM-CSA algorithm signif-
icantly reduces energy consumption and enhances connectivity performance compared to
PSO, AFSA, and basic CSA algorithms, offering promising advancements for wireless sen-
sor networks. He et al. [169] introduced a Multi-Stage CSA (MSCSA) addressing the limi-
tations of the original CSA in handling complex global optimization problems. MSCSA em-
ploys chaos and multiple opposition-based learning to enhance population quality, integrates

local and global search stages, and incorporates large-scale migration for population diver-

41

sity. Experimental results showcase MSCSA’s competitiveness and superiority over other
algorithms on complex benchmarks. Singh et al. [170] introduced a novel load-shedding
approach employing a modified CSA to ensure post-load-shedding voltage stability. The
proposed method optimally selects load buses for shedding, using an objective function that
considers voltage increments, PV-curve slope, transmission losses, and load shed amount.
Comparison with other algorithms highlights the efficacy of the CSA-based strategy on IEEE
14 and 25-bus systems, enhancing voltage stability while minimizing load shedding.

Rao et al. [171] introduced a hybrid algorithm, the Probabilistic Simplified Sine Cosine
CSA (PSCCSA), to enhance the CSA’s location update process. PSCCSA combines the sim-
plicity of CSA with a probabilistic simplified sine cosine approach, effectively improving its
performance. Comparative experiments demonstrate PSCCSA’s feasibility and effectiveness
across standard test functions and classic engineering problems. Liu et al. [172] intro-
duced a modified CSA called Group Strategy CSA (GCSA), which enhances optimization
efficiency by dividing crows into competing groups with distinct roles and statuses. GCSA
incorporates various search modes to enhance solution diversity and search efficiency, while
an adaptive mechanism adjusts crow search ranges for balanced exploration and exploita-
tion. Experimental results on benchmark functions and engineering design problems show
GCSA’s competitive performance against 11 other algorithms. Osei-kwakye et al. [173]
proposed a diversity-enhanced hybrid algorithm called Hybrid PSO and CSA with a cluster-
ing initialization strategy (HPSOCSA-CIS) for feature selection. HPSOCSA-CIS addresses
the premature convergence issue of the Binary PSO (BPSO) by incorporating crow intelli-
gence and a clustering technique. Experimental results on 15 standard UCI datasets demon-
strate that HPSOCSA-CIS outperforms other hybrid and standard optimization algorithms,
achieving significant improvements in mean classification accuracy for low, medium, and
high-dimensional datasets. Andic et al. [174] introduced a novel application of the CSA
in power system state estimation using limited-channel Phasor Measurement Units (PMUs).
The CSA is utilized to optimize PMU placement considering channel constraints and to es-
timate the system state based on the collected PMU data. Experimental results on IEEE test

systems show that the proposed CSA-based state estimator outperforms GA, PSO, and Artifi-

42

cial Bee Swarm Optimization (ABSO) methods, demonstrating its effectiveness in achieving
accurate and reliable power system state estimation. This study presents a valuable contri-
bution to enhancing power system analysis, operation, and planning through improved state
estimation techniques. He et al. [175] introduced a novel version of the CSA called Multi-
Stage Search Integration CSA (MSCSA) to address the limitations of the original CSA in
handling complex global optimization problems. MSCSA incorporates chaos and multiple
opposition-based learning techniques to enhance population quality and ergodicity. It em-
ploys multiple search stages, including free foraging, following, and large-scale migration,
to strike a balance between global exploration and local exploitation. Experimental compar-
1sons with various algorithms on complex benchmark functions demonstrate the competitive
performance and superiority of MSCSA in tackling large-scale complicated problems. Zhao
et al. [30] introduced VMCSA, an improved CSA enhanced with variable neighborhood
descent (VND) and information exchange mutation (IEM) strategies. VMCSA addresses
local optimality issues in CSA and showcases superior optimization performance through
experiments on CEC2014 and CEC’21 benchmarks. Furthermore, VMCSA demonstrates its
effectiveness in multi-level thresholding image segmentation, particularly on COVID-19 X-
ray images, exhibiting superior segmentation results and robustness compared to alternative
algorithms.

In a notable contribution, Gholami et al. [176] introduced an enhanced version of the
Crow Search Algorithm (CSA) known as Improved CSA (ICSA). This novel approach in-
corporates a sophisticated updating technique that leverages the advantages of the current
global best position. By doing so, the algorithm’s convergence is promoted, and its capabil-
ity for local search is significantly enhanced. Experimental results demonstrate that the pro-
posed ICSA method outperforms traditional CSA as well as other meta-heuristic algorithms,
yielding promising and superior results. Furthermore, Ke et al. [177] proposed an improved
version of CSA, also referred to as ICSA, for the optimal design of a typical commercial
building in a selected Australian city. This method integrates value functions and reverse
learning to improve the algorithm’s performance. Comparative analysis using a number of

benchmark methods shows that ICSA delivers more precise findings while significantly re-

43

ducing computing times, making it a highly efficient solution. To handle the limitation of the
conventional CSA, Necira et al. [62] have introduced a new form of the CSA called the "dy-
namic crow search algorithm" (DCSA). The DCSA adds two modifications to the basic CSA.
Firstly, the algorithm is dynamically adapted by changing the CSA parameters throughout
the optimization process. Specifically, the flight length (F L) is modified in accordance with
the generalized Pareto probability density function, whilst the attraction parameter (AP) is
adjusted along a linear trajectory. Experimental findings show that DCSA outperforms its
conventional counterpart. These CSA developments, such as the ICSA, ICSA with reverse
learning and value functions, and the dynamic crow search algorithm (DCSA), demonstrate
the ongoing work to enhance the algorithm’s convergence, accuracy, and efficiency, further
establishing CSA as a powerful tool for solving complex optimization problems.

To cope with the fundamental CSA flaws, Braik et al. [153] introduced a memory-based
hybrid CSA (MHCSA) using Particle Swarm Optimization (PSO). This hybridization strat-
egy was suggested to boost its diversity and balance its search capabilities. To take advan-
tage of the most fruitful search regions, the memory component of MHCSA was started with
the best solution (pbest) of PSO. The best CSA members are improved using the best PSO
solutions discovered thus far (gbest) and (pbest). Furthermore, a better balance between ex-
ploration and exploitation throughout the course of iterations was achieved by utilizing two
adaptive exponential functions for the AP and f1 parameters. Recognizing the limitations of
CSA, specifically those related to fixed predefined parameters such as f/ and AP, the authors
in [178] introduced adaptive parameter mechanisms to balance exploration and exploitation
potentials. The study proposed three new versions of CSA: Exponential CSA (ECSA), Power
CSA (PCSA), and S-shaped CSA (SCSA). These versions incorporate exponential, power,
and S-shaped growth functions, respectively, to modulate f/ and AP dynamically. Further-
more, a new dominant parameter was added to the positioning update process to further
refine the algorithms’ exploration and exploitation capabilities. To validate the effectiveness
of these improved CSA versions, the researchers conducted extensive evaluations using 67
benchmark functions and applied the algorithms to four engineering design problems. Com-

parative analyses with standard CSA and other existing methods demonstrated that ECSA,

44

PCSA, and SCSA significantly enhanced performance.

Cao et al. [179] proposed an improved CSA to optimize the extreme learning machine
neural network. The proposed improvements include incorporating the search strategy of the
PSO algorithm and the Gaussian function into the primary CSA to boost its global search
ability and convergence accuracy. Khalilpourazari and Pasandideh [180] developed a novel
hybrid algorithm called the sine-cosine crow search algorithm (SCCSA) that combines the
benefits of two recently created algorithms, CSA and sine-cosine algorithm (SCA). The sug-
gested algorithm’s capabilities for diversification and intensification have been significantly
enhanced. Experimental results and analysis demonstrated that the recommended technique
offered promising solutions compared to other state-of-the-art methods. Rizk-Allah et al.
[181] incorporated chaos theory (CT) into the CSA (CCSA) for solving fractional opti-
mization problems. The conventional CSA’s parameters are tuned with CT to boost ex-
ploration/exploitation tendencies and improve the global convergence speed. In order to
effectively tackle high-dimensional global optimization problems, an enhancement to CSA
(ICSA) is presented by Jain et al. [182]. By including the adaptive adjustment operator,
the experience factor, and the L’evy flying distribution in the position update mechanism of
the crows, the balance between the exploitation and exploration capacities of the CSA is
enhanced. For a comprehensive review of other CSA variants and application scenarios, one
can refer to [81]. Recently, Awadallah et al. [183] has introduced a cellular automata-based
CSA (CCSA) where the framework of a cellular automata model is combined with the stan-
dard CSA to regulate its diversity throughout the search and hence increase its efficiency.
The experimental findings over 23 standard benchmark functions proved the superiority of
CCSA compared to other well-known algorithms. Overall, Table 2.3 presents a brief and
informative summary of literature reviews that concentrate on the various variants and adap-

tations made to the CSA algorithm.

45

Table 2.3: Summary of recent advances in the CSA and their applications across various

fields

Authors (Year)

Main Modification

Application

Remark

Althanoon et al.

(2021) [162]

Opposition-based learning

for flight length

Feature selection for

classification

Superior feature selection performance

Chaudbhuri et al.
(2021) [163]

Time-varying flight length

Feature selection in

packing mode

Prevented premature convergence effectively

Eliguzel (2021)
[164]

Discretization, local search,

and elitism strategy

P-median problem

Enhanced performance in solving the P-median

problem

Grisales-Noreiia et

al. (2023) [165]

Master-slave methodology

using CSA

Integration of
photovoltaic generators

into DC grids

Demonstrated applicability, efficiency, and
robustness in minimizing operating costs

compared to other methodologies.

Braik et al. (2023)
[166]

Memory-based Hybrid CSA
(MHCSA) combining CSA
with PSO

Various benchmarks

Enhanced memory representation and balance

between exploration-exploitation.

Kumar et al. (2023)
[167]

Combining stacked

autoencoders and CSA

Community detection in

complex networks

Effectiveness in modularity matrix reduction and
clustering optimization, surpassing traditional and

contemporary algorithms.

Bai et al. (2023)

Improved CSA named

Topology optimization

Significantly reduces energy consumption and

[168] Cauchy variation in [oT enhances connectivity, offering advancements for
optimization CSA wireless sensor networks.
(CM-CSA)
He et al. (2023) Multi-Stage CSA (MSCSA) Complex global Enhanced population quality by incorporating

[169]

with chaos and multiple

opposition-based learning

optimization problems

diverse search strategies.

Singh et al. (2023)
[170]

Modified CSA

Voltage stability in

power systems

Efficacy in selecting load buses for shedding,
enhancing voltage stability while minimizing load

shedding compared to other algorithms.

Rao et al. (2023)

Probabilistic Simplified

Standard test functions

Demonstrates feasibility, effectiveness, and

[171] Sine Cosine CSA and classic engineering enhanced performance through a probabilistic
(PSCCSA) problems simplified sine cosine approach.
Liu et al. (2023) Group Strategy CSA Benchmark functions Enhanced solution diversity and search efficiency.
[172] (GCSA) and engineering design Shows competitive performance against other

problems

algorithms.

Osei-kwakye et al.

(2023) [173]

Hybrid PSO and CSA with
clustering initialization

strategy (HPSOCSA-CIS)

Feature selection on

standard UCI datasets

Addresses premature convergence of BPSO,
outperforming other hybrid and standard

optimization algorithms in classification accuracy.

Andic et al. (2023)
[174]

Application of CSA in
power system state

estimation

Power system state
estimation with

limited-channel PMUs

enhancing power system analysis and planning.

Continued on next page

46

Table 2.3 continued from previous page

Authors (Year) Main Modification

Application

Remark

Multi-Stage Search
Integration CSA (MSCSA)

He et al. (2023)
[175]

optimization problems

Complex global

le

Incorporates chaos and multiple opposition-based

arning, showing competitive performance in

tackling large-scale problems.

Zhao et al. (2023) VMCSA enhanced with

[30] VND and IEM strategies

Multi-level thresholding

image segmentation,
COVID-19 X-ray

images

Addresses local optimality issues, showcasing

superior performance in segmentation tasks.

Sheta et al. (2023) Integration of adaptive

benchmark functions

superior performance in compared to the original

Gholami et al.

(2021) [176]

Improved CSA (ICSA) with

sophisticated updating

technique

[178] parameters (f/ and AP) and engineering CSA and other methods.
using three growth function applications
variants
Not specified Promotes convergence and enhances local search

capabilities, outperforming traditional CSA and

other meta-heuristics.

Ke et al. (2021)

[177]

ICSA with value functions

and reverse learning

Optimal design of

commercial buildings

Delivers more precise findings and significantly

reduces computing times, showcasing high

efficiency.

Necira et al. (2021)
[62]

Dynamic Crow Search
Algorithm (DCSA) with
dynamic adaptation of

parameters

Not specified

flight length and attraction parameter, enhancing

Outperforms the conventional CSA by adapting

the algorithm’s performance.

Cao et al. (2021)
[179]

Improved CSA with PSO
strategy and Gaussian

function

Extreme learning
machine neural network

optimization

Boosted global search ability and convergence

accuracy

Khalilpourazari and
Pasandideh (2019)
[180]

Sine-Cosine Crow Search

Algorithm (SCCSA)

Not specified

Enhanced diversification and intensification
capabilities, showing promising solutions

compared to state-of-the-art methods.

Rizk-Allah et al.
(2018) [181]

Chaos theory incorporated

into CSA (CCSA)

Fractional optimization

problems

Boosted exploration/exploitation and improved
global convergence speed by tuning CSA’s

parameters with chaos theory.

Jain et al. (2017)

Enhancement to CSA

(ICSA) with adaptive

High-dimensional global

optimization problems

Enhanced balance between exploitation and

exploration capacities, improving performance in

(2022) [183]

CSA (CCSA)

[182]
adjustment, experience high-dimensional problems.
factor, and L’evy flying
distribution
Awadallah et al. Cellular automata-based Standard benchmark Increased efficiency and diversity regulation
functions through a cellular automata model, proving

superior to well-known algorithms.

47

2.4.4 Applications and Developments in the CapSA

Recently, the CapSA has gained significant attention in the research community due to its
exceptional capability in handling a wide range of optimization problems. Inspired by the
intelligent foraging behavior of Capuchin monkeys, CapSA stands out with its unique search-
ing mechanisms and adaptable approach. This section delves into the latest advancements in
CapSA, shedding light on the adjustments, and hybrid variants that have been developed to
enhance its capabilities in solving specific types of optimization challenges.

Al-ganess et al. [156] proposed a novel approach to predict wind power generation using
an enhanced Artificial Neural Network (ANN) model. They employed a specific type of
ANN called the Random Vector Functional Link (RVFL) network, which is well-suited for
forecasting time-series data. To optimize the predictive capability of the RVFL network,
they utilized the CapSA. The researchers tested their method using data from four wind
turbines located in France. Their results showed that the RVFL model, when optimized using
CapSA (CapSA-RVFL), performed significantly better than the original RVFL model. The
results of this study show that CapSA can improve the performance of neural network-based
forecasting models and could be used to solve real-world problems in renewable energy
forecasting.

Ali et al. [155], in their 2022 study, put forward a new method for developing accurate
electrical circuit models for photovoltaic (PV) power generation systems. This method tack-
les challenges like the unavailability of parameters and computational inefficiencies often
faced in traditional methods. They used the CapSA technique to develop an optimization
problem that minimizes the deviation between measured and simulated currents. CapSA is
chosen for its simplicity and efficient exploration and exploitation balance. Testing on dif-
ferent PV models showed it outperformed traditional metaheuristic approaches with lower
root mean squared error (RMSE) values. This study advances PV modeling methods and
showcases CapSA’s ability to solve complex engineering optimization problems.

In a significant advancement to the CapSA, Abd Elaziz et al. [184] proposed a wrapper-
based feature selection (FS) technique. Their approach aims to improve the FS process by

meticulously selecting the most relevant features. This approach addresses the challenges

48

associated with high data dimensions and the presence of features that are irrelevant or con-
tain noise. The authors made several enhancements to CapSA. These enhancements en-
tail dynamically adjusting the inertia weight, integrating sine-cosine accelerating factors,
and employing a randomized learning technique. These advancements greatly enhanced
CapSA’s capacity to examine and utilize the solution landscape. The modified CapSA,
termed ECapSA, was evaluated on several real-world datasets acquired from the UCI repos-
itory. The ECapSA outperformed conventional FS algorithms in these experiments, demon-
strating its superiority as an FS tool. Braik et al. [185] suggested a modified Binary CapSA
BCSA. To address the issues of local maxima and randomness, they incorporated Lévy
flight and chaotic sequences into the foraging process. This resulted in two improved ver-
sions: Lévy-flight Capuchin Search Algorithm (LBCSA) which enhances search exploitation
and exploration and Chaotic Binary Capuchin Search Algorithm (CBCSA) which amplifies
search dynamics through chaotic mechanisms. Additionally, they combined these strategies
into LCBCSA, leading to better diversity and an increased likelihood of finding optimal solu-
tions. The proposed methods outperformed existing feature selection techniques in accuracy
and fitness scores on a collection of twenty-six University of California Irvin (UCI) datasets.
This represents a substantial improvement in the field of feature selection. In a different
study, Asgharzadeh et al. [186] presented an improved version of the binary CapSA (BME-
CapSA) for FS to enhance the accuracy of Intrusion Detection Systems (IDSs) in Internet of
Things (IoT) devices. Aiming to tackle the rising security vulnerabilities in [oT infrastruc-
tures, the study focused on refining the FS process. The proposed BMECapSA algorithm,
when coupled with a deep learning-based feature extraction process, proved effective in se-
lecting features. The study demonstrated the potential of the enhanced binary CapSA as a
promising approach for refining FS, thereby contributing to enhanced IoT security.

Braik et al. [159] have developed a novel approach to handle the optimization issues in
Economic Load Dispatch (ELD) in power systems. ELD involves arranging the power gen-
eration from thermal units to meet the demand efficiently. To solve this, the authors proposed
the Improved Hybrid CapSA (IHCSA), which initially introduces a memory component to

enhance the algorithm’s exploitation and adaptively adjust exploratory and exploitative ca-

49

pabilities during the search. The IHCSA aims to optimize the scheduling of thermal units
to deliver desired power outputs while minimizing fuel costs. Additionally, the algorithm
includes variable adjustments to maintain a balance between exploration and exploitation
throughout the search process. Second, the algorithm combines the Gradient-Based Opti-
mization (GBO) method and Local Escaping Operator (LEO) to improve its ability to con-
duct intensive searches, which allows for a more robust and effective search performance.
The algorithm was tested in six scenarios with different generator counts and loading condi-
tions and outperformed both the basic CapSA and other optimization methods in minimizing
operational costs.

To optimize threshold levels in multi-level image segmentation, Zaki et al. proposed
another notable hybrid approach using the CapSA [187]. The authors make an effort to ad-
dress issues such as the uneven distribution of the initial population, limited global search
capabilities, and premature convergence to local optima by introducing an Improved CapSA
(ICAPSA). This improvement introduces a learning strategy based on chaos theory to set the
initial positions of capuchins, which greatly improves the quality of the starting population.
Moreover, ICAPSA incorporates a Lévy Flight disturbance strategy into the iterative update
of positions, carefully balancing global and local search efficiencies. Using Kapur’s entropy
as the objective function, [CAPSA demonstrates its advanced segmentation abilities in multi-
level thresholding for plant images. When compared against traditional CapSA, as well as
other known methods, ICAPSA’s performance stands out, showing superior visual segmenta-
tion effects and enhanced data metrics. (2023). In another hybrid approach, Suba and Ahmad
(2023) [188] developed a new optimization method by combining the CapSA and the Wild
Horse Optimizer (WHO) algorithms to enhance the performance of tandem perovskite solar
cells (PSC). The combined method, known as CapSA-WHO, aimed to optimize solar cell
efficiency by studying the composition of the perovskite solar cell and the impact of dif-
ferent materials on its performance. By implementing this technique, the researchers were
able to identify optimal material compositions and structural configurations that resulted in
improved solar cell efficiency with reduced computational effort. The findings from the ap-

plication of the CapSA-WHO method demonstrated its effectiveness in achieving higher de-

50

vice performance compared to traditional optimization approaches. In a recent study, Qtaish
et al. (2023) [189] investigated the improvement of the K-means clustering algorithm by
developing a hybrid CapSA (HCSA) that combines features from the Chameleon Swarm
algorithm to address issues related to local optima traps and initialization sensitivity. This
novel approach aimed to leverage the adaptive movement behavior of capuchins, enhanced
with a rotation mechanism, to improve exploration and exploitation across the search space.
By combining these mechanisms, the algorithm’s clustering efficiency was enhanced, pro-
viding expanded search capabilities and diversity. The HCSA has been proven effective in 16
diverse datasets, demonstrating its superior performance in clustering tasks when compared
to traditional K-means and other meta-heuristic-based clustering methods. This research
contributes to the continuous progress in CapSA applications, demonstrating its potential in
addressing complex, real-world problems through enhanced meta-heuristic solutions. Table
2.4 provides an overview of recent studies focusing on various modifications made to CapSA
and their applications.

The studies presented in Tabe 2.4 highlight the continuous progress and versatility of
the CapSA. CapSA has been successfully applied to diverse areas, demonstrating its ef-
fectiveness in renewable energy forecasting, feature selection for IoT security, economic
load dispatch in power systems, optimization of solar cell efficiency, and clustering tasks.
Researchers have explored both basic applications of CapSA and innovative modifications,
such as incorporating dynamic inertia weights and chaotic sequences, as well as hybridiz-
ing CapSA with other algorithms to enhance its performance. Despite advancements in
the CapSA algorithm, there is a gap in research regarding its integration with an island
model. This presents an opportunity to enhance CapSA’s capabilities further. Our research
introduces several novel improvements to CapSA, including a refined mechanism for updat-
ing followers and an enhanced local best perturbation strategy. Additionally, we integrate
these enhancements with a dynamic migration-based island model, taking the algorithm be-
yond existing modifications. This approach aims to significantly improve the algorithm’s
efficiency, addressing the limitations of current models and setting a new benchmark for

CapSA’s application in intricate optimization problems.

51

Table 2.4: Summary of recent studies utilizing CapSA for various applications

Authors (Year) Main Modification Application Remark
Al-qaness et al. (2022) Basic CapSA ‘Wind power prediction Enhanced predictive accuracy of
[156] RVFL models
Ali et al. (2022) [155] Basic CapSA PV system modeling Lower RMSE values, improved

efficiency

Abd Elaziz et al.
(2023) [184]

Dynamically adjusting inertia
weight, sine-cosine acceleration
coefficients, and incorporating a

stochastic learning strategy

Feature selection

Improved handling of high data
dimensionality and irrelevant

features

Braik et al. (2023)
[185]

Introduced binary CapSA (BCSA)
with enhancements through Lévy

flight and chaotic sequences

Feature selection

Higher accuracy and fitness scores

Asgharzadeh et al.
(2022) [186]

Enhanced binary CapSA
(BMECapSA)

ToT intrusion detection

Improved feature selection for IoT

security

Braik et al. (2022)
[159]

Incorporating a memory component,
adaptive functions, and hybridizing

with GBO and LEO for ELD

Economic Load Dispatch

(ELD)

Outperformed CapSA and other
methods in operational cost

reduction

Zaki et al. (2023)

Introduction of chaos theory-based

Multi-level image

Superior visual effects and enhanced

(2023) [188]

algorithms for optimization of

tandem perovskite solar cells

solar cells

[187] learning strategy and Lévy Flight segmentation data metrics
disturbance strategy for improved
search capabilities
Suba and Ahmad Hybridization of CapSA with WHO | Optimization of perovskite | Improved solar cell efficiency with

reduced computational effort

Qtaish et al. (2023)
[189]

Combining CapSA with features
from the Chameleon Swarm

algorithm

K-means clustering tasks

Superior performance in clustering
tasks compared to traditional

methods

2.4.5 Review of Island-Based MHs

This section is dedicated to presenting a review of island-based parallel MHs and their ap-
plications. The island model has been applied in the literature with several MHs for various
purposes. Some were tested on mathematical benchmark functions, while others were ex-
ploited to solve real-life optimization problems. Besides, multiple techniques have been
used to construct and manage the migration process and its related factors. Moreover, dif-
ferent evaluation measures were adopted to prove the proposed models’ effectiveness; some

were concerned with improving the algorithm’s speedup, while others were concerned with

52

obtaining a solution with good quality regardless of the computational time.
In the following subsections, we thoroughly review the main recent approaches proposed
in the literature for the parallelization of MHs using the island model. We also identify some

open challenges for future research directions.

2.4.5.1 Mathematical Optimization Problems

In the literature, a well-known set of mathematical functions is useful for assessing the be-
havior and characteristics of optimization algorithms such as robustness, convergence rate,
and general performance aspects [103] [190]. These functions are modeled as a minimiza-
tion problem where the global minimum (optimal solution) is known [142]. Based on their
characteristics, they cover three major families: Uni-modal (UM), Multi-modal (MM), and
composite MM functions. UM function has a unique global optimal solution and is usually
useful for testing the exploitative capability of optimization algorithms. In contrast, MM
functions have multiple local optima and are used to test the exploratory potential of algo-
rithms. The third family is selected from the (IEEE CEC 2005, IEEE CEC 2009, IEEE CEC
2013) competition [191] [192] that covers hybrid rotated and shifted MM functions which
are more challenging than traditional test functions. Details and formulas of these functions
can be found in [92] [98] [93].

Some island-based MHs proposed in previous research have been benchmarked on the
aforementioned functions. For instance, the island model concepts were integrated with the
original Harmony Search (HS) to develop a new island-based version (iHS) with improved
performance [193]. The random-ring migration topology and the best-worst selection re-
placement policy were utilized to exchange selected solutions among the islands. Extensive
experiments based on simple factorial design were performed to investigate and analyze
the effects of migration parameters (i.e., My, M,, I,) on iHS performance. Parameters that
provided the optimal results were selected. Reported results revealed that the iHS is signif-
icantly sensitive to its parameters. The new variation iHS achieved good performance for
global optimization functions. The same methodology was used to adapt the island model

to build parallel variants of the Bat algorithm (called iBAT) [194], FPA (called IsFPA) [52],

53

and island-based ABC (1ABC) [53].

Considering these works, the authors focused on applying the concepts of the island
model without taking into consideration parallel computing (i.e., the authors did not im-
plement their system on a parallel architecture). Hence, applying this approach to more
challenging and time-consuming real-world problems will not be effective in terms of com-
putational time, which is a critical factor in this kind of problem.

Abed-alguni and Barhoush [56] introduced a distributed version of the GWO (DGWO)
by incorporating the basic island model concepts. The main objective is to enhance the di-
versity of the original GWO. The cooperative model was designed based on the random-ring
topology and the best-worst migration scheme. The proposed DGWO is distinguished from
the above mentioned works by utilizing a synchronous migration scheme that is actually
applied on parallel platforms. The migration process is triggered periodically after a pre-
defined number of iterations specified by M;. Hence, after each My iteration, the islands
are restructured randomly to form a ring topology and exchange solutions at the same time.
Fifteen standard benchmarks were utilized for the sensitivity analysis, while 30 challenging
CEC 2014 benchmarks were used to validate the performance of DGWO. Promising results
in terms of solution quality and convergence behavior were achieved.

Following the same methodology, an island-based WOA (iWOA) parallel approach was
introduced by Abed-alguni et al. [142]. The main aim was to maintain population diversity
and reduce the required computational time to converge to high-quality solutions. Reported
results emphasize the efficiency of incorporating the island model with WOA. Moreover, a
modified variant of the Cuckoo Search (CS) algorithm utilizing disruptive polynomial muta-
tion (CSPM) was incorporated with the island model to create a new method called iCSPM
[195]. It was found that the island model enhances the ability of CS to preserve the diversity
of its population.

Taken together, the works mentioned above are similar in that they design different ex-
perimental scenarios using a simple factorial design technique to investigate the sensitivity
of the proposed models to migration parameters. However, this design does not consider the

interaction between factors and may lead to incorrect conclusions [196]. Therefore, a full

54

or fractional factorial design augmented with appropriate statistical tests is recommended in
this case.

Given the importance of the factors that affect the migration process, some studies have
been conducted to carefully study how these factors affect the migration process. For in-
stance, Pais et al. [51] and Thaher and Sartawi [59] provided interesting research to examine
the effectiveness of island-based GA (PGA-I) and island-based ABC (iABC), respectively.
To investigate the impact of migration parameters and their interactions, a statistically based
full factorial design was used. To provide accurate speedup estimation that yields accurate
and meaningful findings, different statistical concepts, such as the regression model and the
Analysis of Variance (ANOVA), were utilized. These studies came to the conclusion that,
depending on the problem at hand, different settings had different effects. Additionally, po-
tential speedups for the PGA-I and iABC were observed.

The island model has been incorporated with different EAs for continuous optimization
problems. Following a different approach, Kushida et al. [197] introduced an island-based
Differential Evolution (DE). This approach is distinguished from the aforementioned papers
by using heterogeneous island sizes (i.e., different-sized islands) and using different control
parameters of DE for each island. Therefore, each island has varying convergence charac-
teristics. In this approach, the size of each island is changed adaptively during the search
process, utilizing an individual transfer policy.

Another interesting island-based approach has been recently proposed by Turgut et al.
[198]. The authors embedded the concepts of the island model into the Crow Search Al-
gorithm (CROW). They introduced four hierarchical migration topologies within the island
model framework and evaluated their effectiveness using 45 optimization test functions, in-
cluding classic benchmark optimization problems and CEC 2015 benchmark functions. They
also applied these models to six multi-dimensional real-world optimal control problems: par-
allel reaction, continuous stirred tank reactor, batch reactor consecutive reaction, nonlinear
constrained mathematical system, nonlinear continuous stirred tank reactor, and nonlinear
crane container problems. The findings revealed that incorporating island model concepts

significantly enhanced the optimization performance of CROW. The proposed island mod-

55

els either outperformed or matched the performance of six selected literature optimizers in
27-29 classic benchmark problems. Additionally, the inclusion of a master sub-population
in the island model further improved optimization capabilities, consistently yielding better

results in all optimal control problems compared to non-master sub-population models.

Table 2.5: Summary of main previous works that incorporated island model with MHs for
optimizing continuous benchmark functions.

migration policy Evaluation measure
proposed approach metaheuristic algorithm benchmarks topology selection-replacemnet speedup solution quality
iHs [193] Harmony Search 25 random ring best-worst v
island DE [197] Differential evolution 9 random ring best-worst v
iBAT [194] Bat-inspired Algorithm 15 ring topology best-worst v
IsFPA [52] Flower Pollution Algorithms 23 random ring best-worst v
DGWO [56] Grey Wolf Optimizer 45 random ring best-worst v
iWOA [142] Whale Optimization Algorithm 18 random ring best-worst v
iCSPM [195] Cuckoo search with 15 random ring best-worst v
disruptive polynomial mutation
pGA-I[51] genetic Algorithm 2 Single ring, random, v v
All-to-all best-worst
iABC [53] Artificial Bee Colony 15 random ring best-worst v
island CROW [198] Crow search Algorithm 45 hierarchical best-worst v
DM-LIMGA [199] Genetic Algorithm 15 master-slave DDMP policy v

In summary, as mentioned earlier, two possible evaluation criteria are used to evaluate
the performance of parallel MHs: solution quality and computational time (e.g., speedup and
efficiency). Most reviewed studies (as shown in Table 2.5) reported solution quality using
a fixed number of iterations/evaluations. In practice, the parallelization scheme’s efficiency
should be proven in terms of speedup and/or efficiency measures. Inspecting Table 2.5, it
is clear that ring topology and the best-worst migration policy are extensively used in most
studies. The ring topology is actually the simplest migration topology. However, the choice
of topology has a significant impact on the quality of the obtained results [11]. Therefore,
other structures such as star, grid, and array should be investigated. Moreover, to better
prove the effectiveness of the proposed models, challenging real-world problems should be

addressed.

2.4.5.2 Modern Applications of Island-Based MHs

Several island-based MHs approaches have been exploited to tackle a wide variety of chal-
lenging and real-world optimization problems in different domains. In this subsection, we
briefly highlight the main applications, while Table 2.6 summarizes most of the approaches

found in the literature.

56

Scheduling Problem Applications

Some approaches have been applied to scheduling problems. Doush et al. [200] incorporated
the island model concepts with a recently modified variant of HS (MHSNH) to propose a new
parallel variant called iMHSNH. The proposed model was applied to handle the problem
of flow shop scheduling with blocking. The authors utilized Taillard’s benchmark, a de
facto job scheduling dataset. The findings confirmed promising results, demonstrating the
effectiveness of the proposed model in improving scheduling performance.

Another island-based model for scheduling problems was recently proposed by Corcoran
and Wainwright [49]. They investigated the performance of an island-based GA on the
problem of multiprocessor scheduling. The authors concluded that the parallel GA produced
better-quality solutions than the sequential version. Recently, a variable-sized island model
was incorporated with the DE algorithm without a migration process [201]. The proposed
model was applied to solve the discrete-continuous scheduling problem with continuous
resource discretization (DCSPwCRD).

For scheduling workflows in the cloud computing environment, Alawad and Abed-alguni
[202] introduced a discrete variant of iCSPM proposed in [195], augmented with the opposition-
based learning (OBL) method. The main contribution was the utilization of the OBL tech-
nique at the level of islands during the initialization steps. This novel approach had not been
applied before. The proposed model, known as DiICSPM, demonstrated better performance

compared to state-of-the-art methods.

Neural Network Training

For training feed-forward neural network, Thein [203] applied an island-based DE model
called Island DE Neural Network (IDENN). the proposed model was used to optimize the
network parameters such as weights, learning rate, and momentum rate. Promising results

in terms of error and convergence rate were achieved.

57

Shortest Common Supersequence (SCS)

Michel and Middendorf [204] introduced an optimization model using island-based ACO
for finding good parameters for the Shortest Common Supersequence (SCS) problem, which

can be applied in mechanical engineering, molecular biology, and production planning.

Software Engineering

In 2014, Alshraideh et al. [205] introduced a multi-population GA model for branch cover-
age test data generation used in the software testing phase. The model is based on a mul-
tiple path island GA. The proposed model was evaluated based on execution time, number
of executions, time improvement, and search efficiency. The results demonstrated that the
multi-population GA model outperformed traditional approaches, offering significant im-

provements in test data generation efficiency and effectiveness.

Industrial Manufacturing

Palomo-Romero et al. [206] investigated the performance of a parallel GA based on the
island model (IMGA) for addressing the problem of unequal area facility layout (UA-FL).
Well-known problems selected from the literature were used to validate the performance
of the proposed IMGA model. A full factorial design with 144 different configurations
was applied to select suitable parameters for IMGA, ensuring comprehensive evaluation and

optimization of the algorithm’s performance.

Other Applications

Some proposed approaches were investigated using benchmarks and validated on challeng-
ing real-life problems. For instance, [194] applied the proposed iBA on three real-life cases
of the economic load dispatch problem. Another parallel model was proposed by Lardeux
and Goéffon [207] for solving the 0/1 knapsack and MAX-SAT problems. They introduced
a dynamic island-based GA, with the main contribution being the allocation of adaptive mi-
gration probabilities to each edge based on the last migration effect. Recently, Mohammed

et al. [208] investigated the island-based GA for solving the 3-SAT problem.

58

M 1S10M-1S9q Suu $JIns Inoj wopqod 1vS-¢ w03y d1ousn) [802] VD puejst
2)s10m-159q ydeid oyordwod Z IVS-XVIA pue yoesdeuy 1/0 WYILIOZ[Y O1AUD) [L0Z] VD pue]st
A JSI0M-1S9q reormorerary sweqoid g surojqoid [onuoo rewndo unIoS[y YoIeas mor) [86T1 MOYD!
A JSI0M-1S9q Suur Sased ¢ yoredsIp peoy oTwou0d9 unrioS[y pardsur-jeg [¥61] vdr
Sunndwoos pnoyo ur
A 1SI0M-1$9q SuLr wopuer € Surnpayos SMOIom [o189g 003oN) [s61]1 NSO
2 1S10M-1S9q Suu 9T noAe| Ajqroej eare [enboupn wWyILo3[Y J1ouan) [902] VOINI
uoneIduas vjep
M jstom-wiopuer ydei3 ojopdwoo sweidoxd g 159) 93BI0A0D YourIq WPLIOZ[Y O1oUD) [soz] VD puejst
A JSI0M-1S9q - 1 oouonbasiadng wourwo)) 3s9lI0yg uoneziundQ Auofo)) 1uy [+0Z] OOV puelst
A 1SI0M-159q Suur S1osBIED § S}IOMIQU [eInou Sururern uonn[oAy [ENUARIIJ [c0z] NNAAI
(@YOMdSOQ) UONeZNLIdSIP
90INOSAI SNONUNUOD YIIM
M - - - Surnpoyos SNONUNUO-9)AIISIP uonn[oAd [enuarePiq [10¢] A pue[st ozIs-ninuw
M M 1SI0M-1SoNY Suu S9SBD {7 Surrenpayos J0ssedoxdnnu WYLIO3[Y O1ouan) [6t] VD pue[st
Sunporq s
A JSI0M-1S9q Surr wopuer (prey[rel) | Surnpoyos doys mog yoIeaS AuowiIRl payIpou [00ZIHNSHIAT
Anrenb uonnjos dnpeads jouwooe[dor-uorooes A3o010doy syrewyouaq worqoxd WYILIOT[B dNSLINAYBIoW yoeoidde pasodoxd

QInseaw uonen[eAq

Korjod uoneidu

suoneorjdde pprom-[ear ogy1oads 10J pouSIsop SONSLINAYLISW PIseq-PUL[SI UTRW JO ATeWIwing :9°7 I[qeL

59

2.4.5.3 Summary of Reviewed Publications

This section discusses the expansion of island-based MHs models in the literature. Figure
2.10 depicts the number of publications per year that combine the island model with MHs.
According to the findings, the number of publications remained almost constant (one publi-
cation per year) in the early years between 1995 and 2017. However, research in this domain

has become very active in the last three years, reaching a peak in 2019 with six publications.

7

Number of puplications
P w o+ u (=2

-

6
"4
3
2 "
101 1 1 1-I T 1 1.

1995 1998 2010 2011 2013 2014 2015 2016 2017 2018 2019 2020

Figure 2.10: Number of island-based MHs publications per year

To understand the popularity of using MHs with the island model, Figure 2.11 shows the
number of publications per algorithm combined with the island model. As can be observed,
evolutionary algorithms (i.e., GA and DE) are used more frequently than swarm intelligence
algorithms. GA is the most exploited algorithm, followed by DE, HS, and CS, respectively.
In general, there is a relatively small number of MHs paralleled using the island model
compared to the vast number of MHs in the literature. This leaves the research field open
for implementation with many well-regarded MHs such as HHO, MFO, CSA, CapSA, and

others.

T I -

Number of publications

[=T S N)

H5 GA DE BAT FPO GWO WOA C5 ABC CROW ACO

Figure 2.11: Number of publications per each algorithm combined with island-based
parallel model

60

Figure 2.12b summarizes the percentage of used migration policies (i.e., communication
topology and selection-replacement strategy) in relation to the number of reviewed papers.
These findings confirm the results presented in Tables 2.5 and 2.6. It is clear that ring topol-

ogy and the best-worst migration policy are used extensively in most studies.

4.3%

=ring = complete = hierarical = master-slave = best-worst = random = DDMP policy

(a) migration topology (b) migrants selection replacement policy

Figure 2.12: Distribution of used migration strategies

Despite the recent movement towards structured population approaches, specifically island-
based models, most studies have incorporated the basic and fundamental versions of MHs
with the island model without first focusing on enhancing the basic algorithm behavior. Ad-
ditionally, most studies have used the basic island model with a fixed migration policy. The
few studies that have switched to dynamic policies often do not consider comprehensive
information from each island, such as population diversity and fitness values. In most stud-
ies, solutions are the primary information exchanged during the migration process. Only a
minimal number of studies indicate the usefulness of context information (e.g., measures of
population diversity). The exchange of information should be meaningful and timely; there-
fore, static or predefined migration frequency is not always practical. Introducing adaptive
migration behavior based on the exchanged information would be an interesting develop-
ment.

Furthermore, migration parameters are problem-dependent and should be appropriately
tuned for each targeted problem. This tuning is not significantly applicable when solving
large-scale, time-consuming real problems. Therefore, the dynamic adaptation of parameters

in a reliable way is still limited. For instance, it would be interesting to propose a dynamic

61

model with migration rates. These challenges highlight potential areas for further research

and improvement in the implementation of island-based models.

62

Chapter Three: Methodology

This chapter outlines the methodology used to answer the research questions and achieve
the study’s objectives as illustrated in Figure 3.1. The primary objective of this study is to
enhance the performance of two recent MHs, i.e., the CSA and CapSA, by incorporating
new operators and the cooperative island model. One of the significant improvements is
the development of an adaptive migration policy. This innovative approach aims to balance
exploration and exploitation processes throughout the cooperative island framework, leading
to more effective search and solution discovery. This will provide a parallel optimization

model capable of handling a wide range of optimization issues in practical applications.

. Selection of Optimization J Enhancement of selected MHs Integration with :
Selection of MHs Experimental Work

Problems (New Operators) Cooperative Island Model

« Basic Island Model « Data Preparation
« Adaptive Migration-based + Comparative Analysis
Island Model « Statistical Analysis

« Mathematical Functions « Enhanced CSA
« Real-World Applications « Enhanced CapSA

Figure 3.1: Overview of research methodology steps

The methodology is built upon three key components: research design, data collection,
and data analysis. Each of these components is essential in verifying the efficacy of the
suggested improvements and the newly proposed island migration strategy. In Section 3.1,
the author discusses the foundation of this work. This section discusses the selection process
and explains why CSA and CapSA should be improved. It details how new operators can
enhance exploration and exploitation potential and how these algorithms can be combined
into a cooperative island model. Additionally, it introduces the design of an innovative island
migration policy that adaptively adjusts migration rates based on the dynamic assessment of
population diversity and individual island fitness. Section 3.2 introduces a summary of the

benchmark datasets used to validate the performance of the proposed models.

63

Lastly, the metrics and statistical analysis approach used to analyze the results from the
experimental simulations are discussed in Section 3.3.

The approach utilized in this study is helpful since it establishes a connection between
theoretical advancements and their actual application. Detailed explanations of the methods

and assessments used to achieve the study objectives are provided in the subsequent sections.

3.1 Research Design

3.1.1 Opverview of the Research Approach

This study employs a quantitative methodology, utilizing objective measures and statistical
analysis of numerical data [209], to assess the efficacy of computational algorithms. By
using this approach, a thorough assessment of algorithms’ performance is conducted for a
variety of optimization problems, which facilitates direct comparison between traditional
and enhanced versions [131]. This approach is the perfect fit for this study as it emphasizes
assessing the proposed improvements and their real-life impact. The use of quantitative
methodology is extremely useful when seeking to confirm research hypotheses and establish
a solid analytical foundation through techniques such as non-parametric tests [210]. Further-
more, it is necessary to create meaningful visualizations, such as diversity and convergence
speed curves, to display the behavior of CSA and CapSA. Overall, to effectively answer the
study questions and achieve the desired objectives, it is highly recommended to employ the

quantitative research method.

3.1.2 Selection of Metaheuristic Algorithms

This study focuses on enhancing CSA and CapSA among various types of MHs. Multiple
factors contributed to the importance given to CSA and CapSA. These factors are listed

below:

* Optimization problems that have been solved by CSA and CapSA have given pos-
itive results, but according to various studies and preliminary tests, integrating new

operators can improve performance. It is an opportunity for exploring undiscovered

64

dynamics in exploration and exploitation, which is one of the main objectives of this

study.

Because of their well-known algorithmic flexibility, CSA and CapSA are readily adapt-
able for any type of optimization landscape. Moreover, they offer a convenient exper-
imentation environment as well as creative innovation possibilities because they are
simple and can be easily implemented. The novelty suggested in this study could be
integrated into both CSA and CapSA through the incorporation of new operators and

adaptive tactics due to its inherent flexibility.

Utilizing the principles of the cooperative island model, in CSA and CapSA intro-
duces a novel opportunity for research, enabling us to explore the impact of flexible
migration rules on metaheuristic algorithms. This approach is expected to enhance the
performance of these algorithms by leveraging the strengths of each algorithm within

a collaborative and diverse island-based framework.

The need for validation in optimization scenarios further justifies our selection. To
conduct an extensive empirical evaluation, the study focuses on CSA and CapSA al-
gorithms, comparing their enhanced versions with both state-of-the-art and traditional

algorithms.

In summary, this study aims to advance CSA and CapSA as they have the potential
to significantly improve performance, offer flexibility in tackling diverse optimization
challenges, and employ a cooperative island model. These characteristics align with
our objectives of developing optimization models that can effectively address the com-

plexities encountered in real-world applications.

3.1.3 Proposed Enhancements in CSA: Introducing Novel Operators

CSA drew the researcher’s attention, so it has recently been enhanced through a number

of approaches. As a particular class of MHs, CSA possesses impressive space exploration

capabilities [30]. However, it has certain shortcomings [153, 30]. First, CSA is prone to stag-

nation in local optimum due to its constant awareness probability (A p) and flight length (F'1).

65

Second, the crow search mode is somewhat limited (i.e., relatively single), which prevents
it from efficiently locating the global optimal solution when tackling challenging problems
[63]. In particular, the proposed operators of the original CSA let their search agents change
their positions depending on random individuals and random probability to improve pop-
ulation variety. Thirdly, CSA ignores the importance of optimum solutions in population
evolution, which results in difficulties like premature and sluggish convergence when at-
tempting to solve complicated problems. As a result, CSA needs additional operators that
will place an emphasis on exploitation and provide a better balance between diversification

and intensification. Subsequent sections present proposed enhancements of the CSA.

3.1.3.1 Adaptive Tournament Selection Based Guided CSA (ATCSA)

As previously explained in Section 2.4.1, in each iteration ¢, the crow i should select one
of the flock crows (for example, the crow j) and follow it to the location of its hidden food
place. The guided crow j is chosen at random in the fundamental CSA. However, because
random selection is used among the population, there is a significant chance of following a
poor position (i.e. with a large fitness value considering the minimization problem). How-
ever, because it is performed randomly, many crows fail to advance because they choose the
wrong target crow to follow. Actually, in this situation, many crows are flying to undesirable
locations. Therefore, using random solutions to guide the optimization process results in dif-
ficulties while solving complex tasks, such as slow convergence and premature convergence
[30].

There are different approaches that have been offered as ways to implement evolution-
ary selection mechanisms. The three most common approaches are a tournament, a roulette
wheel, and a rank-based selection [6]. The idea behind the selection is "survival of the best,"
which states that the best solution has a more significant probability of being chosen and,
as a result, produces a better population [11]. Nevertheless, the poorest possible solutions
are not completely ignored, but they have a decreased probability of being chosen. Selective
pressure, also known as the propensity to choose the fittest members of the existing pop-

ulation, is the main variable that has an impact on how effective the selection process is.

66

The harmony between intensification and diversification is impacted by the level of selection
pressure. That is, too much pressure will lead to a bias toward the best-fit solutions, which
will lead to a lack of diversity and premature convergence, whereas little pressure keeps
diversity and slows convergence.

The tournament selection process proposed by E. Goldberg et al [211] is well-known
for being straightforward, powerful, and the most prevalent selection strategy seen in EAs
[212]. It is regarded as a two-step selection process. A group of k individuals is chosen at
random from the existing population in the first phase, where k represents the size of the
tournament. After that, the best-fit solution among those in the tournament is selected. By
providing every individual an equal chance of getting chosen for the competition stage, this
scheme’s key advantage is that it preserves diversity. Algorithm 3 presents the pseudo-code
of the standard tournament selection mechanism.

The tournament size (k) is a crucial variable that is utilized to adjust the selection pressure
and, as a result, the trade-off between exploitation and exploration. A bias toward the best
solutions will result from greater values of k (more selection pressure), whereas a bias toward
random behavior will result from lower values of k& (lower selection pressure). However,
figuring out the right value for the k parameter is difficult and depends on the kind of problem

being handled [54].

Algorithm 3 Pseudo-code of tournament selection [6]

//Tournament selection for one solution
Identify the tournament size k
r = generate random index within [1, N]
set best =1
seti=2
while (i < k) do
r = generate random index within [1, N]
if (F(Xr) < F(Xbest)) then
best=r
i=i+1
Return (best)

In this study, an adaptive tournament-based selection operator is utilized with the CSA
to choose the guide solution. The proposed variant is called Adaptive Tournament Selection

Based Guided CSA (ATCSA). This strategy selects K crows at random from the population

67

for each crow i at each iteration . Then the fittest solution is picked to guide the crow
i. One of the benefits of making this choice is that there is less of a chance of selecting an
unsuitable target crow. In this scenario, the crows are able to improve their position by acting
more effectively and following the crows that are better targeted, which ultimately leads to
an enhancement in the convergence speed of the algorithm to some extent.

However, K’s value should be carefully considered. Intensification will result from larger
values of k, whereas searches with smaller values of k will behave more randomly (i.e., with
more diversification). To deal with this issue and strike a good balance between exploration
and exploitation, we proposed a self-adaptive tournament-based selection scheme where the
value of k is linearly increased over the course of iterations using Eq. (3.1). In this regard,
to facilitate better solution space exploration, the value of K starts at a modest number at the
beginning of the optimization process (i.e., in the early iterations). The K has a larger value
as it increases in accordance with Eq. (3.1) in the final iterations, where precise searching
around the best local optimums is critical. It is important to note that the original random

selection process used in the basic CSA is a special case of the ATCSA when k = 1.

K = round(Km,'n +1x ((Kmax - Kmin)/tmax)> (31)

3.1.3.2 Modified Random Movement CSA (MRCSA)

The basic CSA is designed to mimic two distinct actions shown by crows: pursuit and eva-
sion. The behavior of evasion is modeled by implementing a random movement, which is
then computed using a uniformly distributed random solution inside the search space. Al-
though this updating mechanism improves the diversity of the population, it might result in
difficulties like premature and slow convergence when attempting to solve complex problems
because it ignores the importance of optimum solutions in population evolution [30].

To assist the basic CSA in avoiding these problems, the author introduced the Modified

Random Movement CSA (MRCSA). In this regard, the rule given in Eq. (3.2) which is

68

derived from the HHO algorithm [92] is utilized to simulate the evasion behavior.

Xi,t+l = (Xbesm _Xavg,t) - n (LB + rZ(UB - LB)) (32)

where X; ;.1 denotes crow’ position vector in the next generation # + 1, X, refers to the
global best solution so far, rq,r,, are randomly generated numbers within range (0, 1) in
each generation, LB and UB denotes the lower and upper boundaries of decision variables,
respectively, X,,¢ x refers to the mean position of individuals in the current generation, which

can be calculated using Eq. (3.3):

M=

1
Xavg,l = N Xi,l (33)

1

i

where N indicates the population size, and X; ; denotes the location of each crow at generation
t.

This rule has the advantage of taking into account both the optimal position so far and
the population’s average position. Additionally, a randomly scaled component based on the
range of decision variables is utilized. In order to investigate different areas of the search
space and give additional diversification trends, two random coefficients, r| and r,, are con-
sidered for the component. Accordingly, the evasion rules in the basic CSA, as given in Eq.

(2.7), are modified as shown in Eq. (3.4).

Xis+ri % flig x (mj;—Xiy) rj > AP,
Xit+1 = (3.4)

(Xpestt — Xavgs) —r1(LB+r2(UB—LB)) otherwise

3.1.3.3 Enhanced Crow Search Algorithm (ECSA)

To improve the algorithm’s ability to search globally and keep it from converging too quickly,
both rules—adaptive tournament selection and modified random movement—are used to
develop the Enhanced Crow Search Algorithm (ECSA), a better version of CSA. The pseudo-

code of ECSA is presented in Algorithm 4.

69

Algorithm 4 Pseudo-code of enhanced CSA

1: Input: define the adjustable parameters (N, d, tyaxs Knins Kmax, f1, and AP)

2: Output: The best crow and its fitness value.

3: Randomly generate the initial positions of crows X;(i = 1,2,...,N)

4: Initialize the memory of crows M; = X;(i =1,2,...,N)

5: Compute the quality of each crow using the fitness function f(x)

6: Xpesr = the optimal solution so far

7: while (¢ < t4,) do

8: Update tournament size K using Eq. (3.1)

9: Compute the average position of all crows using Eq. (3.3)
10: fori=1toN do
11: choose guided crow j using tournament selection
12: if (r; < AP;,) then D> pursuit step
13: Update the crow i based on Eq. (2.5)
14: else if (r; < AP;,) then > evasion step
15: Update the crow i based on Eq. (3.2)
16: Save the new positions if they are feasible
17: Asses the quality of each new position f(x;;+1)
18: Update the memory for each crow if f(x; 1) is superior to f(x;;)

19: Update X, if there is any better solution
20: Return Xp,g

3.1.4 Advancements in CapSA: Novel Operators Integration

The CapSA is highly regarded by researchers and practitioners for its adaptability and effec-
tiveness in handling various optimization problems. Since its inception in 2021, the CapSA
has been widely applied in various research domains. The design takes inspiration from the
clever foraging behavior of capuchin monkeys; utilizing social hierarchy and spatial aware-
ness boosts the algorithms’ capacity to explore and exploit the search space effectively. How-
ever, despite its numerous positive aspects, the algorithm still faces various issues [184, 159],
especially under varying problem complexities. Similar to most MHs, CapSA is susceptible
to the lack of diversity in its population. To be specific, CapSA has a tendency to become
trapped in local optima, which could limit its effectiveness. These observations emphasize
the importance of innovative enhancements to further improve its performance. To address
these challenges and make the most of CapSA’s capabilities, three significant enhancements

have been introduced:

1. A refined follower update mechanism for improved exploration.

70

2. A novel followers’ updating mechanism for improved local best perpetuation.

3. An adaptive dual update strategy incorporating an adaptive control parameter for dy-

namic strategy adaptation.

These enhancements focus on fine-tuning the algorithm’s core mechanisms to achieve
a better balance between exploration and exploitation, resulting in higher-quality solutions.
The following sections provide an explanation of the theory behind the modifications, the

mathematical formulation, and the anticipated impact on the algorithm’s performance.

3.1.4.1 A Refined Follower Update Mechanism (MCapSA1)

The follower updating mechanism is an important component of the search dynamics of the
original CapSA. In particular, half of the population (for indices i > n/2) are designated as
followers, with their positions being updated by averaging with their adjacent neighbor’s
solution. Mathematically, this is represented as the position information of the ith follower
is averaged with the position information of the preceding follower. This mechanism is in-
herently exploitative, with a strong emphasis on intensifying the search around the swarm’s
current positions. According to [213], employing this mechanism makes the followers’ be-
havior pretty uniform, which might drive other followers to convergence to suboptimal solu-
tions or entrapment in local optima when dealing with high-dimensional problems with lots
of local optima. In addition, this might reduce population diversity, thereby hindering the
algorithm’s ability to investigate unexplored search regions.

To overcome these limitations, the first proposed modification of the CapSA, referred to
as MCapSAl, is introduced. In this version, a refined follower update mechanism is pro-
posed. The mathematical framework of the MCapSA1 remains consistent with the original
CapSA in terms of leaders updating rules. However, the positions of the follower capuchins
are refined using the following equation:

(Xl'(t) + X (l‘))

Xi(t+1) = 5

—l—r(pbestq —Xw(t)) (3.5)

where X;(t) represents the position of the i-th follower, X;_(¢) indicates the position of the

71

preceding follower, pbest, denotes the local best position of a randomly selected individ-
ual, X, represents the position of a randomly selected individual within the swarm, g, w
€ [1...N], and r signifies a random number uniformly generated within [0, 1].

The addition of r(pbestq — Xy (t)) introduces a perturbation based on the DE concept,
which is aimed at enhancing exploration by incorporating information from the local best
positions and a randomly selected individual’s position. In specific, the incorporation of the
perturbation term, inspired by DE, greatly enhances the MCapSA1l by promoting a more
dynamic exploration of the followers’ neighborhood. This model combines traditional New-
tonian motion with insights from DE, preserving the integrity of the followers’ movement
while enhancing the search by encouraging exploration in promising areas of the search
space. As a result, this modification improves the balance between exploration and exploita-
tion, maintains better diversity within the swarm, reduces the risk of premature convergence,
and enhances the algorithm’s ability to become more effective in navigating complex, multi-

modal search spaces.

3.1.4.2 Enhanced Local Best Perturbation Strategy

As part of the ongoing development of CapSA, a new version named MCapSA?2 has been
introduced. This version features an innovative updating rule for followers, termed the en-
hanced local best perturbation strategy. While preserving the original leaders’ position up-
dating rules of CapSA, it completely transforms the followers’ updating mechanism by incor-
porating a perturbation towards the local optimum, significantly improving the algorithm’s

exploration capabilities. The new updating rule is mathematically defined as:

X;(t +1) = pbest; + r.(Xyana — Xi(t)) (3.6)

where pbest; denotes the local best position of the ith individual, X, is a randomly chosen
position from a set of N solutions, and r is a random number uniformly distributed within
the range [0, 1].

The enhanced local best perturbation strategy employs a mathematical formula that in-

troduces a dynamic exploration step around the local best positions, as shown in Eq. 3.6.

72

This change improves the exploration around the local best positions by adding a perturba-
tion based on the idea of DE. Specifically, the additional term r. (and — Xi(t)) dynamically
modifies the step size for exploration, depending on how far the current position is from a
randomly chosen solution. This approach enables a flexible step size (i.e., a flexible adjust-
ment of the search radius) around the local best based on the landscape of the optimization
problem and the current phase of the algorithm. This adaptability enhances the algorithm’s
ability to discover and exploit promising areas of the search space more efficiently than the
original mechanism. In addition, this approach promotes greater diversity within the solution
by enabling followers to explore their local best positions with an adaptive step size. The
presence of a diverse population is essential to avoid getting stuck in suboptimal solutions.
In summary, the enhanced local best perturbation strategy achieves a better balance be-
tween exploration and exploitation. It uses the best local positions to guide the search process
(exploitation) while also introducing variability and adaptability through the perturbation

term to thoroughly explore the search space (exploration).

3.1.4.3 Adaptive Dual Update Strategy (MCapSA3)

Considering the strengths of the enhancements introduced in MCapSA1 and MCapSA2, the
CapSA further evolves with the introduction of MCapSA3, which incorporates an adap-
tive dual update strategy. This strategy employs a dual mechanism for updating followers’
positions and cleverly combines the refined follower update mechanism (Eq. 3.5) and the
enhanced local best perturbation strategy (Eq. 3.6). By leveraging the unique advantages of
both, MCapSA3 optimizes the search process. Utilizing multiple update mechanisms em-
powers the algorithm with a wider range of behaviors, enabling it to respond more flexibly

to various challenges posed by optimization landscapes. The rule is defined as Eq. 3.7.

<X—"(’)+§H(t)) +r- (pbesty— X, (1)) if r <CP,

Xi(t+1)= (3.7)

pbesti+r- (X,ana — Xi(t)) otherwise.

The updating rule for followers is adaptively guided by a control parameter (CP), which

73

is adaptively decreased over iterations according to the formula in Eq. 3.8.
£\2
CP=1xexp (-4 X ?> (3.8)

where ¢ represents the current iteration, and 7' is the maximum number of iterations. This

formula ensures that CP decreases exponentially over time as show in Figure 3.2.

L.or CP =1 xexp(—4 x£)2

I e o
i =) ©

Control Parameter (CP)

e
[N}

0.0

0 200 400 600 800 1000
Iterations (t)

Figure 3.2: Trend of control parameter CP over 1000 iterations.

The rule in Eq. 3.7 outlines how each follower’s position is updated in the next iteration
t+ 1, depending on a crucial decision factor: the control parameter CP compared to a ran-
domly generated number r within the range of 0 to 1. This formula is designed to balance
two strategies for position updates, ensuring that the algorithm can effectively handle both

exploration and exploitation during the optimization process.

1. When r < CP, the algorithm employs the specific refined follower update strategy
given in Eq. 3.5 for updating the position of the ith follower. This strategy is designed
to enhance the exploration of the search space by leveraging both the swarm’s current

position information and an additional exploration factor.

2. Conversely, when r > CP, a different strategy given in Eq. 3.6 is activated for the
position update. This alternate approach focuses more on exploitation, aiming to re-

fine the search around promising areas identified through the algorithm’s exploration

74

activities.

The design of the adaptive control parameter, which decreases exponentially over time,
ensures that the algorithm’s focus shifts from exploration to exploitation progressively, align-
ing with the evolving needs of the optimization process. Initially, a higher emphasis on
exploration helps to discover diverse potential solutions across the search space. As CP di-
minishes, the algorithm increasingly concentrates on exploiting the most promising regions

identified, fine-tuning the solutions to approach the optimal outcome.

3.1.44 Summary of the Introduced Modifications

In summary, to effectively overcome the limitations found in the original CapSA and fully
utilize its capabilities in solving intricate optimization problems, this study presents three
unique variations: MCapSA1, MCapSA2, and MCapSA3. Every variant includes a unique
modification aimed at improving the algorithm’s performance. These modifications enhance
exploration and exploitation capabilities and dynamically balance search strategies. In the
rest of this thesis, the final modified version that combines all introduced enhancements will
be referred to as Enhanced Capuchin Search Algorithm (ECapSA). Table 4.15 provides a
clear summary of the modifications and their implications, showing how CapSA’s function-
ality and adaptability have been improved through an evolutionary approach. Algorithm 5
outlines the various steps involved in the proposed ECapSA.

Table 3.1: Summary of enhanced variants of CapSA and their implications

Variant Refined Enhanced Adaptive Dual Implications
Follower Local Best Update
Update Perturbation Strategy
CapSA N N N Baseline algorithm performance.
MCapSA1l Y N N Improved exploration and convergence speed.
MCapSA2 N Y N Enhanced exploitation and overcoming of local
optima.
MCapSA3 Y Y Y Better balance of exploration and exploitation,
(ECapSA) adaptively managed.

3.1.5 Integration with Cooperative Island Model

Following the strategic enhancements made to address specific limitations of the CSA and the

CapSA, and to further amplify the performance and robustness of these algorithms, this study

75

Algorithm 5 Pseudo-code of the enhanced CapSA (ECapSA)

Ju—s
—

12:
13:
14:
15:

17:
18:
19:
20:
21:
22:
23:

24
25:

AR A A S ey

_
e

Initialize the adjustable parameters of the basic CapSA
Generate the initial positions of the capuchines X;(i = 1,2,...,N) randomly.
Calculate the fitness of each individual capuchin
Initialize the velocity v; and memory pbest; of capuchins
gbest = the optimal solution so far
while (< T) do
Update life time convergence 7 using Eq. (2.17)
Update inertia weight @ using Eq. (2.11)
Update control parameter CP using Eq. (3.8)
fori=1toNdo
if (i < N/2) then
Update X; following the leaders updating rules of the original
CapSA through Egs. (2.9) to (2.16).
else
if (r < CP) then
Update X; based on Eq. (3.5)
else
Update X; based on Eq. (3.6)
Adjust X; through the limits set for the variable’s upper and lower boundaries.
Evaluate the fitness of new position f(x;)
if f(x;) < f(pbest;) then
pbest; = x;
F(pbest;) = f(x:)
if f(x;) < f(gbest) then

gbest = x;
[f(gbest) = f(xi)
r=t+1

Return gbest

explores the integration of CSA, CapSA, and their enhanced variants within a cooperative

island model framework. This integration seeks to enhance their exploration efficiency and

the likelihood of discovering global optima.

CSA and CapSA, like other optimization methods, may initially find and converge to

local optima, which is a limitation inherent to their search strategies. The cooperative island

model provides a strong mechanism to address this challenge by promoting solution diversity

through parallel evolution on separate islands. Each island evolves a population using either

the base algorithm or one of its variations, enabling a combination of diverse exploration

and exploitation strategies to be utilized across the search space. The use of the cooperative

island model is highly beneficial for improving algorithmic performance for the following

reasons:

76

1. Diversity Management: The island model’s approach of dividing the population into
smaller, isolated groups promotes independent exploration of various regions in the
search space. This helps to minimize the risk of the entire population converging

prematurely on local optima.

2. Parallel Evolutionary Paths: Enhancing the search process’s efficiency and expediting

it by exploring multiple promising areas concurrently.

3. Migration Policies: By incorporating migration policies, we can facilitate selective
individual exchanges between islands, promoting the sharing of information and im-

proving the global search capability.

3.1.5.1 Homogeneous Island Approache

Within the field of computational optimization, utilizing a homogeneous island approach in
the cooperative island model framework uses a consistent algorithm variant to evolve the
population on each island, ensuring a uniform evolutionary process across all islands while
taking advantage of the specific strengths of the chosen algorithm variant.

For CSA and its modified versions (ATCSA, MRCSA, ECSA), as well as CapSA and its
variants (MCapSA1, MCapSA2, ECapSA), employing the island model leads to the creation
of island-based versions: iCSA, iATCSA, iMRCSA, iECSA for CSA variants, and iCapSA,
iMCapSA1, iMCapSA2, and iECapSA for CapSA variants. This application follows a ho-
mogeneous approach. For instance, The flowchart of the proposed iECSA is depicted in

Figure 3.3. In detail, the suggested iECSA follows the following steps:

* Step 1: Initialize Problem and Adjustable Parameters

This stage involves initializing the problem parameters, ECSA parameters, and the
previously indicated migration parameters. First, the objective function f(x), problem
dimension (d) and solution encoding (x = x1,x2,...,x;) are defined. The adjustable
parameters of ECSA as described in Sections 2.4.1 and 3.1.3.1 must also setup in this
step which include AP, f1, Kyin, and K,,4x, and t,,,,. Additionally, it is necessary to set

up the additional island model parameters described in Section 2.3 which comprise the

77

number of islands (s), migration frequency (M), migration rate (M,), interconnection

topology, and migration policy.

Step 2: Generate the Initial Population of iECSA Randomly

In this step, iECSA follows the standard CSA. Accordingly, a population of crows X =
(x1, X2, x3, xn) are initially positioned randomly in the d-dimensional search space.
These are the candidate solutions to the problem at hand. Each candidate solution (x;,

where j € (1,2, 3,4, N)) is determined using Eq. (3.9).

where)?L and)?U are the lower and upper bound for the problem dimensions, r is a

random number inside [0,1].

Step 3: Split the Initial Population into Set of Islands

The initial population is divided into s islands each of size I; = N /s. For instance, let
N =9, s = 3, then Iy = 3. Assuming that X = (x3, x1, x5, X8, X7, X2, Xg, X9, X4), then
island| = (xg, x¢, X1), island, = (x4, X7, x3), and island; = (x5, x9, x2). Note that each

solution is assigned to a random island.

Step 4: Optimization Process

The optimization process starts in this phase by running the cooperative algorithms
concurrently. Here, each island has its own population and search mechanism (i.e.
ECSA). Therefore, each algorithm evolves its population using the mathematical oper-
ators of the ECSA as discussed in Section 3.1.3.3. It is important to note that the same
search algorithm (e.g., ECSA) with the same settings is embedded with each island.
Therefore, this study uses a homogeneous island model. In addition, the evolution

process happens asynchronously based on the generalized island model [214, 215].

Step 5: Migration Process

This process is triggered periodically after a predefined number of iterations as spec-

ified by the My parameter. A communication topology (e.g., bidirectional ring topol-

78

ogy) is generated randomly to interconnect the islands (i.e., identify the neighbors for
each island). During migration, a percentage of selected individuals from each island,
controlled by the M, parameter, are transferred between the connected islands. The
proposed model is implemented utilizing the Python Parallel Global Multiobjective
(PyGMO) framework, which facilitates this information exchange through its parallel
and distributed computing capabilities. Specifically, Pygmo employs message-passing
and shared memory mechanisms to enable efficient communication and synchroniza-
tion between parallel tasks. This approach ensures that relevant data and solutions
are exchanged effectively, managing communication overhead and maintaining syn-
chronization across different components of the model. The swapping process among

every two neighboring islands is executed based on the best-worst policy.

Step 6: Check stop criterion: Repeat steps 4-6 until the stop condition (e.g., maxi-

mum iterations) is not met.

Step 7: Return the best solution: if the stop condition is met, return the best solution

found in all islands.

Within the framework of the homogeneous island approach, this strategy is replicated

to develop island-based versions of CapSA, including iCapSA, iMCapSA1l, iMCapSA2, and

iECapSA. All of these variations follow the same basic steps, guaranteeing that the algorithm

is applied consistently to all islands.

3.1.6 Mathematical Formulation of the Island-Based Model

The following mathematical formulations provide a detailed representation of the island-

based model described earlier:

1. Initialize Problem and Adjustable Parameters: Let x; represents a candidate solu-

tion in the search space X, where x; € R4, The initialization of the problem and ECSA

parameters is defined as:

Objective function: f : RY - R

79

(Start) Perform Migration process as

l described in step 5
Initialize problem and the YTes — Vv
parameters of iECSA as described Communication topology
in Step 1 (random ring topology)
\ 4 Migration?
Generate the initial population NVof No
iECSA as in Step 2
. . . \ 4
A 4 Evolve islands in parallel using the - —
Divide the population into () ECSA as discussed in Step 4 Memonizehe it;elztn(sjolutlon inicagh
islands each of size N/s as
explained in Step 3 A
yes
¢ Step 6 \ 4
=) #V: t=t+1
No

v
End Step 7 Return the best solution
obtained by all islands

Figure 3.3: The general process diagram of the proposed iECSA

Problem dimension: d
Solution encoding: x = (x1,x2,...,%g)
Adjustable parameters: {AP, f1, Kpin, Kmax, tmax }

Island model parameters: {s,My,M,,T,Policy}

2. Inmitial Population: Generate initial population X = {xj,x;,...,xy} with
Xj :XL+F- ()?U —)?L)

3. Population Division: Divide the initial population into s islands, each of size I;:

80

Assign solutions to islands randomly:

If X = {x1,x2,...,xn}, thenisland [= {x,,xt,, .-, %, } fork € {1,2,...,s}.

4. Optimization Process: Each island I; applies the ECSA algorithm iteratively:
x;:,rjl =X+ A
where Ax; ; is updated based on ECSA operators:

Ax; j = ECSA_update(x; ;, parameters)

5. Migration Process: Perform migration every My iterations. Define the communica-

tion topology T and perform migration:
T = Randomly generated bidirectional ring topology
Transfer a percentage M, of individuals between connected islands:
P = Top M, percentage of individuals from island 7 to [,
Use the best-worst policy for swapping:
Swapping: xzrj] swaps with xﬁ“
6. Stopping Criterion: The optimization continues until:

! > tmay OF cOnvergence criteria are satisfied

7. Return the Best Solution: After the stopping criterion is met, return the best solution

81

found:

Xpest = arg){relg; f (x)

where & is the combined population of all islands.

3.1.7 Time complexity of the proposed iECSA model

The theoretical time complexity of the proposed iECSA model is calculated based on the
steps outlined in the previous subsection. This analysis takes into account the initialization,
population generation, optimization process, and migration operations across the parallel
islands.

Table 3.2: Time Complexity Analysis of each step in the proposed iECSA

Step Description Time Complexity

1. Initialize Parameters Setup problem parameters and iECSA parameters. o(1)

2. Generate Initial Population | Create N candidate solutions in d-dimensional space. O(N-d)

3. Split Population Divide the population into s islands, each of size I, = ¥ O(N)

4. Optimization Process Evolve each island’s population using ECSA. O (tmax - Is - (d+ f(d))

5. Migration Process Transfer individuals between islands periodically. o (’1"”7'1; -s-M,- ¥) =0 (’;{j]—”f‘ “M,-N)
6. Check Stop Criterion Evaluate the stopping condition. o(1)

7. Return Best Solution Return the best solution found. o(1)

The computational time of the island model using the ECSA is based on the steps detailed
in Table 3.2. Since all islands run concurrently, the overall time complexity is equivalent to
processing one island’s population plus the migration overhead.

For each island, the ECSA 1is applied to a subpopulation of size Iy = %V Therefore, the

time complexity for evolving the population in each island is:

Tistana =) (tmax Ay (d +f(d)))

where:

* Inax 1S the number of iterations.

o [= %V is the subpopulation size in each island.

* d is the dimensionality of the search space.

82

* f(d) represents the complexity of the fitness function evaluation (one evaluation)

which depends on the problem being handled.

The migration process adds an additional overhead:

t
Tmigration =0 (;1;; M, N)

where:
. ’1""4—“;‘ is the number of migration events.
* M, is the migration rate.
* N is the total population size.

Combining these, the overall time complexity of the island model is:

N

T;'sland =0 (tmax' S

-(d+f(d))>+0(l]‘"j1—a;~M,'N)

This analysis captures the time required to handle the subpopulations within each island and
the migration overhead across islands.

The island model is generally designed to improve solution quality and accelerate the
search process to find better solutions in less time [51]. As noted in several studies [52,
55, 193, 194], communication overhead is often not considered, as the primary focus is
on optimizing solution quality and search effectiveness. Our research primarily targets the
first objective—achieving high-quality solutions. Furthermore, the real-world applications
addressed in this study, such as neural network training, multilevel image segmentation, and
software reliability growth model optimization, are not real-time applications. Consequently,

the impact of communication overhead is relatively less critical in these contexts.

3.1.8 Development of Adaptive Island Migration Policy

Traditional approaches in the context of island-based models often employ a fixed migra-

tion rate. Although easy to implement, this one-size-fits-all approach does not adequately

83

address the varied and the dynamic nature of diverse optimization problems. Research un-
derscores the critical impact of migration rate selection on island-based model performance
[59]. Typically, most previous studies utilize hyperparameter tuning and factorial design
to pinpoint optimal rates for varied scenarios [142, 52, 57, 194, 193, 216]. However, the
process of tuning itself introduces a complex optimization challenge, especially for intricate
and time-consuming problems. Specifically, fixed migration rates may lead to several key

limitations:

1. Inflexibility to problem complexity and dynamic environments: Fixed rates do not
adjust to the specific needs of varying problem landscapes, potentially leading to inef-

ficient search strategies.

2. Risk of premature convergence: High fixed rates may cause rapid homogenization of
the population, reducing diversity and increasing the risk of settling on suboptimal

solutions early.

3. Insufficient Exploration: On the other hand, low fixed rates could prevent informa-
tion from being shared between islands, which would prevent the exploration that is

required to find global optima.

The limitations mentioned here emphasize the need for an effective adaptive migration
strategy that takes into account the performance and characteristics of each island. Ac-
cordingly, this study introduces a novel adaptive migration policy that seeks to enhance the
movement of individuals between islands. In this strategy, the migration rates are determined
by considering two primary factors: the values of the objective function and measures of di-
versity. This allows islands with superior performance to distribute more individuals to other
islands through higher migration rates, while islands with inferior performance experience

lower migration rates. By assessing the performance of each island, the model ensures:

1. Islands with outstanding performance have a significant influence on the pool of mi-
grants, encouraging the dissemination of promising solutions.
2. It is essential to maintain diversity across the cooperative islands to fully explore the

search space and avoid premature convergence.

84

In the proposed strategy, when assessing the quality of each island, we consider both
diversity and objective function values. Objective function values play a crucial role in as-
sessing the proximity of a solution to the optimal one, providing insights into the solution’s
optimality and the convergence behavior of the island. In minimization problems, islands
with lower objective function values tend to explore areas of the search space that lead to
improved solutions. Furthermore, keeping track of these values over time proves valuable
in evaluating the rate at which an island is making progress toward discovering effective so-
lutions. A quick convergence is often a sign of an island that is doing exceptionally well.
However, at times, the focus on objective function values can be deceptive, potentially caus-
ing the evolution process to become stuck in local optima. This happens when the search
narrows down too quickly, missing out on possibly better solutions in unexplored areas of
the search space.

Conversely, diversity quantifies the dispersion of solutions throughout an island. In order
to guarantee a thorough exploration and to prevent being stuck in local optima, the island
is actively investigating different parts of the search space. However, the overall quality
of an island may not always be best measured by its high degree of diversity throughout
time. An excessive amount of diversity in the search could be a sign of randomness, which
could result in a less efficient investigation and a slower rate of discovering the optimal
solutions. To maximize its success, an island must strike a delicate balance between two
key factors: accurately assessing current performance through objective function values and
maintaining enough diversity to facilitate future exploration. This equilibrium is crucial for
avoiding the risks of both over-exploitation and the dangers of aimless exploration. As a
result, under the optimization framework, islands that exhibit remarkable objective function
values and diverse solutions are considered to be of high quality. However, achieving this
ideal balance can prove to be a challenging task. This is due to the inherent conflict between
two objectives, particularly when facing minimization problems, as explored in this study. In
order to conquer this challenge, the proposed method utilizes a multiobjective optimization
viewpoint to discover high-quality islands. The key to achieving optimal outcomes lies in

striking a balance between considerable diversity and low objective values at the same time.

85

Using aggregation is a common approach to tackle problems that involve multiple ob-
jectives [217]. A popular method is to unify all objectives into a comprehensive function
by assigning varying weights to each one and then summing them together. The objective
with the greatest weight is deemed to be of utmost significance [8]. As such, our study uti-
lizes the weighted aggregation process to assess the merit of an island in the cooperative
optimization model. By employing this method, we can seamlessly incorporate competing
objectives into one function, effectively ensuring both the solutions’ quality and population
diversity are given priority in minimization problems. Accordingly, in the proposed adapt-
able island migration technique, the migration rate can be adjusted using the formula shown
in Eq. 3.10. This equation takes into account both the diversity and fitness of each island’s
population, enabling to score the overall quality of each island and its contribution to the

migration process.

Migration_Rate 1= (1 — &) x (1 — Fitness) + a x Diversity. (3.10)

where:
* o is a weight parameter that facilitates the control over the trade-off between diversity

and fitness within the optimization process.

* Fitness and Diversity are normalized values representing the average fitness and di-
versity metrics of the island’s population, respectively. To achieve this normalization,

min-max normalization techniques, as shown in Egs. 3.11 and 3.12

Normalization ensures that both fitness and diversity contribute meaningfully to the mi-
gration rate calculation. Fitness values are normalized using min-max normalization, where
a lower raw fitness value (indicative of better performance) translates to a higher normal-
ized value, closer to 1. The transformation 1 — Fitness ensures that a higher normalized
value emphasizes lower raw fitness values, aligning with the goal of maximizing the objec-
tive function (i.e. Migration_Rate). On the other hand, diversity, being inherently positive
and indicative of the population’s spread within the search space, is used directly in its nor-

malized form. It reflects the variety of solutions explored by an island, with higher values

86

suggesting a broader exploration.

. . Fitness — Fitness,y;
Normalized Fitness = — - (3.11)
Fitnessmax — Fitnessmin

Diversity — Diversity, ..

Normalized Diversity = (3.12)

Diversity ., — Diversity;,

In these equations, Fitness and Diversity represent the raw values of fitness and diversity,
respectively. Fitnessyi, and Diversity ., are the minimum observed values for fitness and
diversity across all islands, while Fitnessyy,x and Diversity,,,, denote the maximum observed
values. The resulting Normalized Fitness and Normalized Diversity are the values scaled
between 0 and 1, ensuring that the metrics are on a comparable scale. This normalization
facilitates their combined use in evaluating island quality and adjusting migration rates in the
adaptive island model framework, providing a balanced consideration of both exploration
and exploitation aspects. It is worth mentioning that fitness is calculated using the average
fitness values of all individuals, which provides a measure of the overall performance of the
entire population. Meanwhile, population diversity is calculated using an efficient measure,
which will be detailed in Section 3.3.1.

The weight parameter & plays a crucial role in balancing the emphasis between diversity
and fitness. Values of & closer to 1 give more importance to diversity, promoting exploration,
while values closer to 0 favor fitness, encouraging exploitation and convergence towards
optimal solutions. To address the challenge of tuning o for different targeted optimization
problems, and in line with the principle that exploration is favored in the initial iterations
while exploitation becomes more pronounced as the process advances, an adaptive formula is
employed to dynamically adjust o over the course of the iterations. This adjustment ensures
that o decreases linearly, gradually shifting the focus from exploration towards exploitation.

The formula for this adjustment is given by Eq. 3.13:

t
0(t) = Otmax — (Otmax — Otmin) X T (3.13)

where o/(¢) denotes the value of at iteration 7, Qmax refers to the initial (maximum) value

of o at the beginning of the optimization process, Oy 1s the minimum value of o at the end

87

of the optimization process, t is the current iteration, and 7 is the total number of iterations.

Gradually reducing the value of o from maximum to minimum value can help smoothly
transition from the exploration phase to the exploitation phase. This adaptable modification
of o can be useful to meet the specific needs of different optimization landscapes. Once
the calculation is completed, the result is set to a pre-defined range of 0.1 to 0.7 to carefully
manage the migration rate within practical limits and maintain a balance between high and
low values. This helps prevent loss of diversity due to excessively high rates and delay in
convergence due to too low rates.

In summary, incorporating diversity and fitness into the migration rate calculation results
in a formula that provides a comprehensive assessment of island quality. It tailors each is-
land’s contribution to the global research effort, ensuring a balanced and efficient exploration
and exploitation strategy that is customized to the changing conditions of the optimization

landscape.

3.1.9 Real-world Problems Selection

In addition to theoretical analysis, our proposed algorithms are extensively applied in real-
world situations. These algorithms confidently tackle intricate optimization challenges in a

multitude of domains:

* Training of Feedforward Neural Networks: This involves optimizing the weights
of the network to minimize the difference between the predicted output and the actual
output. Optimization in this context means adjusting the weights and biases to reduce

errors, enhancing the network’s ability to generalize from training data to unseen data.

* Multilevel Thresholding Image Segmentation: Segmentation divides an image into
multiple regions or levels that represent different objects or features. Optimization
here aims to select threshold values that maximize the accuracy of object detection
and classification within an image. It seeks to improve the clarity and relevance of the

segmented areas, facilitating easier analysis and interpretation.

* Estimation of Parameters of Software Reliability Growth Models (SRGMs): In

88

this application, optimization involves fine-tuning the parameters of reliability models
to best fit historical failure data. This helps predict future behavior of software reliabil-
ity more accurately. Optimization ensures that the model parameters provide the most
reliable predictions about software failures, enhancing decision-making in software

development and maintenance.

These specific problems were carefully chosen for several reasons. Firstly, they are
highly relevant and essential, having a direct impact on the contemporary scientific and
technological issues. Secondly, they provide the perfect opportunity for unbiased and com-
prehensive evaluation against existing methods. Moreover, they exhibit diversity in terms
of application areas, effectively demonstrating the versatility of our algorithms. Lastly, the
selected problems vary in computational complexity, allowing for a thorough examination of
our algorithms at different levels of difficulty.

More details about the problem formulations and how the proposed optimization models

can be adapted for these kinds of problems will be presented and explained in Chapter 4.

3.2 Data Collection

For empirical studies, data collection is essential. It enables us to assess hypotheses and ver-
ify suggested approaches. The data collection phase of this study was carefully designed to
evaluate enhanced MHs through a comprehensive methodology. This entails selecting from
a wide range of applied optimization issues, including neural network training, image seg-
mentation, and SRGMs, as well as theoretical challenges, such as real-valued mathematical
functions. The datasets used include 53 benchmark functions—23 standard unimodal and
multimodal functions, and 30 from the IEEE CEC2014 suite with unimodal, multimodal,
hybrid, and composite functions [218, 219]. For real-world applications, the datasets en-
compass 10 biological datasets from the UCI repository for neural network training [220],
10 COVID-19 CT scan images for image segmentation [221, 222], and 10 historical faults
datasets for optimizing SRGMs. Table 3.3 summarizes the datasets and benchmarks used in
this study. More details about these datasets and how they are employed in the experiments

will be presented in Chapter 4.

89

Table 3.3: Summary of Datasets and Benchmarks Used

Application Area Dataset Description Source Purpose

Neural Network Train- . . ucCI Repository | Used for training and testing feedforward

. 10 biological datasets

ing [220] neural networks

Image Seementation 10 COVID-19 CT scan im- | sourced from [221, | Employed for developing and evaluating
ge>ee ages 222] multilevel thresholding techniques

Software Reliabil- Used for estimatin arameters of

ity Growth Models | 10 historical faults datasets Various sources . & parameter

(SRGMs) SRGMs to predict software reliability

23 standard unimodal and

multimodal functions, | IEEE CEC2014, .
. Used to assess the performance of opti-
Benchmark Functions 30 functions from IEEE | Standard Bench- mization algorithms under various com-
CEC2014 suite (unimodal, | mark Sources lexit scengarios
multimodal, hybrid, compos- | [218, 219] P y

ite functions)

3.3 Data Analysis

This section presents the methodology used to analyze the experimental data to assess the
effectiveness and robustness of the enhanced optimization methods. To guarantee a diverse
evaluation, we employed various quantitative and qualitative measures particular to each
handled task. This section provides an overview of these measures, while the detailed ex-
amination, including mathematical formulas and comprehensive descriptions, is presented in

Chapter 4.

3.3.1 Performance Metrics

The evaluation metrics used in this study are crucial for assessing the performance of the op-
timization algorithms across various domains. These metrics have been carefully selected to
reflect the specific characteristics and requirements of each domain. A summary of the eval-
uation metrics employed for each domain is provided in Table 3.4. For detailed explanations
and mathematical formulations of these metrics, please refer to Chapter 4.

Table 3.4 summarizes the performance metrics used across different domains in this

study.

3.3.2 Statistical Analysis Methods

Due to the stochastic nature of the examined MHs, it is essential to adopt a robust approach
for statistical analysis. Given that results from these algorithms may vary across multiple

runs, our approach involves averaging findings from 30 independent runs for each algorithm.

90

Table 3.4: Summary of Evaluation Metrics Across Test Domains

Test Domain

Fitness Values

Quality Measures

Mathematical Benchmarks

Fitness Value (as obtained from
benchmark function formula)

N/A

Neural Network Training

MSE (Eq. 4.29)

Accuracy (Eq. 4.13), F1-Score

Image Segmentation

Kpur Cross-Entropy (4.23)

SSIM (Eq. 4.24)

SRGM Optimization

MSE (Eq. 4.25)

VAF (4.30), correlation coeffi-
cient R (4.31)

Recently, the science of computational intelligence has been more interested in non-
parametric statistical analysis methods, particularly in situations where the data may not
satisfy the strict normal distribution assumptions [223]. Consistent with this approach, we
utilized two well-known non-parametric tests, namely the Friedman test and the Wilcoxon

rank sum test, both with a 5% level of significance, to calculate the overall rank of each

Note: N/A indicates "Not Applicable"

examined algorithm and to determine specific pairwise comparisons.

3.3.2.1 Wilcoxon Rank Sum Test

The Wilcoxon Rank Sum Test, sometimes called the Mann-Whitney U test, is a common
nonparametric test used to investigate if there is a significant difference in the population
median ranks of two independent samples. This is done to judge whether the samples are

likely to come from the same population. The null hypothesis (Hp) and the alternative hy-

pothesis (H}) for the test are defined as follows:

* Hy: There is no difference in the median values of the two samples.

* Hp: There is a difference in the median values of the two samples.

Mathematically, the test statistic U is calculated using the formula in Eq. 3.14:

U = min(Uy,U,)

where U; and U, are defined in Egs. 3.15 and 3.16.

U =n xXny+

ni (m —+ 1)
2

91

_Rl

(3.14)

(3.15)

nz(nz + 1)

—R 3.16
> 2 (3.16)

Uy=n; xXny+

where R; and R; represent the sum of ranks in the first and second samples, respectively.
n; and ny denote the number of observations in the two samples. Once U is calculated,
the next step involves converting this statistic into a p-value to test the null hypothesis. This
involves using the distribution of (U) under the null hypothesis, which the normal distribution
can roughly approximate for larger sample sizes. For a more detailed explanation of these
calculations and the statistical theory behind them, readers can refer to [224].

Wilcoxon Rank Sum test is particularly useful when assessing the efficacy of algorithms
on specific benchmarks or datasets where the samples are independent and may not adhere
to normal distribution. In the realm of MHs, each sample comprises results from 30 inde-
pendent runs, making this test crucial for highlighting significant differences in performance

metrics between enhanced algorithms and their counterparts [131].

3.3.2.2 Friedman test

The Friedman test [225, 226] is employed when assessing the performance of different al-
gorithms across multiple benchmarks or datasets. This test computes the ranks of each algo-
rithm across all datasets and then analyzes the differences in these ranks. The test statistic

x,% is computed as:

where N is the number of datasets, & is the number of algorithms, and R; is the sum of the
ranks for the j-th algorithm. This non-parametric test is invaluable for determining if there
are significant differences in the algorithms’ performance across various benchmarks. For
instance, the test offers valuable insights into the effectiveness of popular algorithms such as
CSA, CapSA, ECSA, and ECapSA when evaluated across various benchmarks. Employing
the Friedman test allows us to calculate the average rank of each algorithm based on its
performance on these benchmarks. This analysis provides a robust metric to identify which

algorithm consistently outperforms the others.

92

Chapter Four: Results

This chapter provides a detailed presentation of the results from extensive research fo-
cused on enhancing CSA and CapSA, as well as integrating these improvements within an
island model framework. It is organized around three key areas of innovation: the enhance-
ment of the CSA, advancements in the CapSA, and the introduction of an adaptive island-
based migration policy. The discussion is structured into four well-defined sections, each
dedicated to examining these contributions, their interdependencies, and their combined ef-
fect on optimization in the field.

Initially, Section 4.3 examines the enhancements made to the CSA, assessing how these
improvements contribute to better algorithmic performance and the advantages of incorpo-
rating these enhancements within a basic island model. Section 4.4 delves into advancements
in the CapSA and how they can be utilized in an island-based framework to achieve better
optimization outcomes. Section 4.5 presents a comparative analysis where the enhanced
island-integrated variants are tested against each other under different migration policies.
This comparison is essential for understanding the impact of migration flexibility on opti-
mization success. Finally, Section 4.6 evaluates the practical performance of these enhanced
models in various real-world applications, including neural network training, image segmen-

tation, and software reliability growth models.

4.1 Common Experimental Setup

All of the experiments in this thesis were conducted in a common computing environment to
ensure that the comparisons were accurate and reliable. The following setup was used across
various tests:

4.1.1 Environment and Tools

All algorithms were developed and tested on a machine running Ubuntu 20.04 LTS, equipped

with an Intel(R) Core(TM) i7-1165G7 CPU running at 2.80 GHz (8 CPUs), and 16 GB of

93

RAM. The algorithms were implemented in Python, utilizing the PyGMO library, which
is a scientific library developed for massively parallel optimization [214]. PyGMO is built
around the idea of providing a unified interface to optimization algorithms and problems,
facilitating their deployment in massively parallel environments. For this research, the core
of PyGMO was customized to develop the parallel island model based on the generalized
island-model paradigm [215]. This customization involved adapting PyGMO’s existing tools
to better suit the specific needs of the enhanced CSA and CapSA variants and their integration

into the adaptive island-based framework.

4.1.2 Algorithm Configurations

Unless otherwise stated, all algorithms were evaluated utilizing identical standard configura-
tions and settings customized for the specific problem types. For real-valued mathematical
problems, the population size and the maximum number of iterations are initially set to 30
and 500, respectively. For more extensive testing, a configuration of 70 population size and
1000 iterations was employed. These parameter values are often used in the field of meta-
heuristic optimization. They were chosen because they have been widely used in previous
studies that examined how metaheuristics perform on similar problems [39, 80, 131]. Such
values are recommended widely in the literature to ensure a balance between computational
efficiency and the quality of solutions. The detailed specific parameters of the suggested
IECSA, iCapSA, and the competitor algorithms are reported in Table 4.1.

Due to the stochastic nature of the examined MHs, all findings are compiled from the
results of 30 independent runs, where the average of the best solution (i.e., the minimum)
attained so far in each iteration, as well as the standard deviation, are reported. Please note
that in all tables presented, AVG denotes the average results of 30 independent runs, and
STD represents the standard deviation, which provides an indication of the variability of the
results across these runs. The most favorable findings are shown in boldface. Recently, the
science of computational intelligence has been more interested in non-parametric statistical
analysis [223]. In this regard, two non-parametric tests, namely the Friedman test [225]

and the Wilcoxon rank sum test [210], both with a 5% level of significance, were utilized

94

Table 4.1: Parameter settings of iECSA and other algorithms

Common parameters

Population size N 30, 50, 70
Maximum No. of iterations 500 for standard functions
1000 for CEC2014
No. of runs 30
significance level o (Friedman test) 0.05
Internal parameters
Algorithm parameter value
iECSA flight length f1 2
Awarness probability AP 0.1
Tournament size K Increased linearly from 1 to 0.5*N
Number of islands 2,4,6
Migration frequency My 25, 50, 100
Migration rate M, 0.1,0.2,0.3
Migration policy best-worst
Comunincation topology random ring
PSO [31] inertai weight (w) decreased linearly [0.9 0.2]
cognitive constant (c) 2
social constant (c¢;) 2
WOA [80] convergence constant a decreased linearly [2 0]
Spiral factor b 1
BAT [126] QOmin Frequency minimum 0
QOmax Frequency maximum 2
loudness A 0.5
Pulse rate r 0.5
DE [105] Mutation factor 0.5
Crossover ratio 0.7
SCA [227] rl decreased linearly [2 0]
r2 random values inside [0 27]
r3 random values inside [0 2]
rd random values inside [0 1]
HGS [131] hunger threshold (LH) 10000
probability of updating position / 0.08
HHO [39] convergence constant (E) decreased linearly [2 0]
GWO [127] convergence constant (a) decreased linearly [2 0]
AO [228] r 10
U 0.00565
w 0.005
o and & 0.1
Gy decreased linearly [2 0]
CapSA [46] ay,ap 1.25,1.5
Pog, Pyy 11,0.7
Winin » Winax 0.1,0.8
EO [229] ai, ap 2,1
\% 1
GP 0.5
AOA [230] o 5
u 0.499
MO Pimins MO Pmax 0.2,0.9
FPA [231] ps 0.8
MFO [128] a [-2,-1]
b 1
SHIO [232] a decreased linearly [1.5 0]

95

to calculate the overall rank of each examined algorithm and to determine specific pairwise
comparisons. In the presented tables, please note that the symbols *+,” ’-,” and &’ have been
utilized to indicate that the proposed enhanced variant has statistically significant superiority
over certain alternative methods (+), while also displaying statistical inferiority to others (-).
Additionally, instances where the performance does not notably differ from that of competing
approaches are also highlighted as (/). Moreover, instances marked with "NAN", which
refers to "Not a Number", show that there is no significant difference between the compared
approaches. In general, a ’NaN’ p-value suggests from the Wilcoxon rank-sum test suggests
that the data in both samples are nearly identical.

This thesis focused on the solution quality measure by using a fixed number of iterations
for all tested algorithms [11, 51]. Accordingly, different quantitative and qualitative met-

rics such as fitness values, convergence curves, and diversity curves are used to assess the

effectiveness and robustness of the proposed methods.

4.2 Experimental Results and Simulations on Mathematical Benchmarks

4.2.1 Mathematical Benchmark Functions Set

Evaluating the behavior and characteristics of optimization algorithms, including their ro-
bustness, convergence rate, and overall performance factors, is commonly done in the liter-
ature by employing various mathematical optimization problems. These problems are char-
acterized as minimization problems, where the optimal solution is referred to as the global
minimum. This study selects two extensively researched sets of diverse benchmark func-
tions to evaluate the effectiveness of the suggested models: the standard benchmarks and
the challenging IEEE Congress on Evolutionary Computation (CEC) functions introduced

in 2014.

4.2.1.1 Standard Benchmark Functions

The first set contains 23 functions (F1-F23), which are standard benchmark functions used
extensively in the literature of optimization [218, 103]. This benchmark collection includes

two primary categories: unimodal (U) and multimodal (M). The U functions (F1-F7) have

96

a unique global optimum solution and are typically helpful for examining the intensifica-
tion potential of optimization techniques. In contrast, because they contain numerous local
optima, M functions (F8-F23) are used to evaluate the diversification capabilities of algo-
rithms. Tables A-1, A-2, and A-3 in Appendix A demonstrate the mathematical formulation

and properties of the standard U and M problems.

4.2.1.2 Challenging IEEE CEC 2014 Functions

The second test suite of mathematical problems was chosen from the IEEE CEC 2014 com-
petition [219], which includes 30 benchmark functions (F1-F30). These benchmark func-
tions are modified versions of other challenging mathematical optimization problems that
have been rotated, shifted, extended, and combined. Accordingly, they may be divided into
four groups according to their characteristics: unimodal functions (F1-F3), multimodal func-
tions (F4-F16), hybrid functions (F17-F22), and composition functions (F23-F30). These
examples are also used in many other publications, and they may demonstrate how well
the algorithms work at balancing exploration and exploitation tendencies and avoiding local
optimums in difficult situations. The hybrid functions (F17-F22) are designed to test the
algorithms’ ability to handle optimization landscapes with a mix of different characteristics.
These include varying levels of modality and separability within a single function. This set
of functions pushes the algorithms to adjust their search strategies to the diverse charac-
teristics of the landscapes, necessitating a smooth transition between modes of exploration
and exploitation. Composition functions (F23-F30), however, combine multiple benchmark
functions into a single composite problem, adding a greater level of complexity. These func-
tions aim to replicate the complexities of real-world problems by incorporating a variety of
optimization challenges into a single framework. The purpose of these composition func-
tions is to assess the algorithms’ ability to navigate through intricate and diverse landscapes,
effectively handling various challenges and achieving optimal performance in optimization.
The key features of IEEE CEC 2014 functions are outlined in Table A-4 in Appendix A. For
further information on these functions, see [219].

The visualizations of selected benchmark functions, ranging from simple unimodal to

97

complex hybrid landscapes, are illustrated in Figure 4.1. These visualizations highlight the
diverse optimization landscapes of the utilized benchmarks. These visualizations empha-
size the importance of implementing advanced optimization strategies that can effectively

navigate and leverage diverse problem spaces.

(d) F15 (e) Rotated Bent Cigar (f) Hybrid Function

Figure 4.1: Representative visualizations of mathematical benchmark functions

4.2.2 Evaluation Metrics

Fitness values are utilized to assess the performance of algorithms on mathematical bench-
mark functions. This metric measures the accuracy of the algorithms in finding optimal or
near-optimal solutions. As the functions used are minimization problems, a solution with a

lower fitness value is deemed more ’fit” within the context of the problem.

4.2.3 Common Metrics and Visualization Techniques

In addition to domain-specific metrics, the study also covers diversity measures and visual-
ization techniques for analyzing the performance of MHs. Diversity measures are used to
quantify exploratory potential. Meanwhile, visual tools such as convergence and diversity

curves are used to provide insights into how well the algorithms balance exploration and

98

exploitation.

* Population diversity and balance measures
In MHs, maintaining a balance or trade-off during the search process is crucial for
achieving favorable outcomes. Search agents with the best solutions guide the process
towards exploitation as they get closer, while increased distance enhances exploration.
This study employs an efficient measure of population diversity, drawn from Morri-
son and De Jong [233], based on the moment of inertia concept. The definition of

population diversity is demonstrated by Equation (4.1).

>4

d
div = Z
j=1

(Xji—cj)? 4.1)
1

i

where the population size is denoted by N, while d indicates the problem dimension.
The jth dimension of the ith solution is represented by X;;. The centroid c; for j =

1,2...d is calculated utilizing Equation (4.2).
1 N

i=—) X 4.2

Cj N l_Zl J 4.2)

This population diversity assessment was selected among other existing measures be-
cause it is closely connected to widely used measures of genotypic and phenotypic
diversity, offering a universal diversity measuring technique. Moreover, it is a compu-

tationally efficient diversity measure [233].

Once the diversity is computed as described above, the exploration (XPL%) and ex-
ploitation (XPT%) proportions can be determined using the formula presented below
[70].

XPL% = (div/divay) % 100 4.3)

XPT% = (|div — diviax| /divmax) x 100 (4.4)

where div,,,, represents the maximum value of population diversity that is calculated
during the optimization process. The formula in Eq. (4.5) is used to quantify the

trade-off (T'O) between exploration and exploitation [234]:

99

TO% = /XPL% x XPT % 4.5)

* Convergence and Diversity curves
Visual tools, such as convergence and diversity curves, are employed to enhance anal-
ysis. Convergence curves are used to demonstrate the speed at which algorithms ap-
proach an optimal solution across iterations. Meanwhile, diversity curves illustrate the
variations in solutions during the optimization process. Collectively, these visual tools
provide a thorough perspective on the algorithms’ performance, demonstrating their
proficiency in identifying superior solutions and sustaining a wide range of potential

solutions.

4.3 Experimental Results of CSA

In this section, a series of thorough experiments are carried out to demonstrate the effective-
ness of the suggested enhancements on CSA. The findings are covered in more detail in the

next subsections.

4.3.1 Impact of Modifications on the Standard CSA

This subsection exhibits a thorough analysis to study how the suggested search strategies
would affect the primary CSA. Therefore, a comprehensive analysis of the 3 developed vari-
ants of CSA (MRCSA, ATCSA, and ECSA) is carried out to identify the top variant in terms
of solution quality, convergence trends, and diversity curves. Table 4.2 summarizes the CSA
variants under investigation, where Y’ indicates that the strategy is included, while "N’

means that the strategy is not included.

Table 4.2: Investigated variants of CSA

Algorithm Adaptive tournament selection Modified random solution generation

CSA N N
MRCSA N Y
ATCSA Y N

ECSA Y Y

The comprehensive results of the CSA and its proposed variants when applied to stan-

dard 30-dimensional test problems are presented in Table 4.3. The table enables a direct

100

Table 4.3: Results of CSA variants on the standard 30-dimensional unimodal and
multimodal test problems

Functions CSA MRCSA ATCSA ECSA
AVG STD AVG STD AVG STD AVG STD

F1 5.63E+00 2.69E+00 1.75E-04 2.79E-04 4.83E-02 3.22E-02 2.56E-04 5.25E-04
F2 3.01E+00 7.74E-01 6.75E-03 8.58E-03 2.83E+00 1.14E+00 3.62E-03 4.41E-03
F3 2.60E+02 8.36E+01 7.68E-02 1.53E-01 1.20E+02 4.28E+01 1.16E-01 4.40E-0O1

F4 5.96E+00 1.45E+00 4.59E-03 1.02E-02 6.39E+00 1.94E+00 4.22E-03 8.25E-03
F5 2.60E+02 1.17E+02 4.37E-03 1.03E-02 1.33E+02 1.04E+02 2.53E-03 7.14E-03
F6 5.88E+00 2.19E+00 2.07E-04 6.05E-04 5.11E-02 2.91E-02 2.28E-04 5.68E-04
F7 6.00E-02 2.24E-02 1.05E-03 8.90E-04 5.39E-02 2.18E-02 8.13E-04 6.34E-04
F8 -6.51E+03 7.05E+02 -1.26E+04 2.90E-01 -6.51E+03 8.93E+02 -1.23E+04 1.56E+03
F9 2.93E+01 1.04E+01 1.52E-04 2.83E-04 2.48E+01 9.10E+00 7.30E-05 1.98E-04
F10 4.08E+00 8.69E-01 3.49E-03 2.75E-03 4.76E+00 9.88E-01 1.74E-03 2.31E-03
F11 1.03E+00 4.56E-02 S5.17E-04 1.32E-03 1.93E-01 7.35E-02 5.44E-04 1.26E-03
F12 4.92E+00 2.37E+00 3.00E-06 6.49E-06 4.07E+00 1.77E+00 1.00E-06 3.36E-06
F13 5.75E+00 1.09E+01 1.02E-04 2.98E-04 2.09E+01 1.75E+01 1.40E-05 3.62E-05
F14 1.02E+00 1.29E-01 9.98E-01 3.71E-16 1.11E+00 4.25E-01 9.98E-01 3.39E-16
F15 442E-04 3.54E-04 3.95E-04 3.26E-04 4.61E-04 3.10E-04 1.82E-03 5.16E-03
Fl16 -1.03E+00 6.78E-16 -1.03E+00 6.78E-16 -1.03E+00 6.78E-16 -1.03E+00 6.78E-16
F17 3.98E-01 1.13E-16 3.98E-01 1.13E-16 3.98E-01 1.13E-16 3.98E-01 1.13E-16
F18 3.00E+00 3.49E-15 3.00E+00 1.95E-15 3.00E+00 2.57E-15 3.90E+00 4.93E+00
F19 -3.86E+00 1.36E-15 -3.86E+00 1.36E-15 -3.86E+00 1.36E-15 -3.86E+00 1.36E-15
F20 -3.30E+00 4.52E-02 -3.15E+00 1.34E-01 -3.27E+00 6.07E-02 -3.08E+00 2.29E-01

F21 -8.66E+00 3.04E+00 -8.98E+00 2.61E+00 -8.57E+00 2.97E+00 -7.72E+00 3.40E+00
F22 -9.75E+00 2.02E+00 -9.13E+00 2.65E+00 -1.04E+01 9.03E-15 -9.60E+00 2.14E+00
F23 -1.00E+01 1.94E+00 -9.48E+00 2.73E+00 -1.00E+01 1.94E+00 -8.72E+00 3.01E+00

comparison of performance between the modified versions and the standard CSA. The re-
sults consistently demonstrate the superiority of the modified variants over the standard CSA
in the majority of the test functions. Specifically, the MRCSA variant outperforms the stan-
dard CSA in 69.5% of the test functions (F1-F15 and F21), the ATCSA variant surpasses the
standard CSA in 47.8% of the test functions (F1-F3, F5-F7, F9, F11-12, and F22-F23), and
the ECSA variant exhibits superiority in 60.8% of the cases (F1-F14). Notably, the proposed
variants excel in handling unimodal functions, showcasing their excellent exploitation capa-
bility compared to the standard CSA. Furthermore, they provide better or at least competi-
tive results in the majority of multimodal cases, indicating their strong exploration capacity.
These improved outcomes can be attributed to the integrated adaptive tournament selection
mechanism and the modified random movement strategy employed by the variants. The
adaptive tournament selection mechanism takes into account the global solution achieved
thus far, while the modified random movement strategy incorporates a randomly scaled com-
ponent. To demonstrate the statistical significance of these differences, the Wilcoxon rank
sum test was applied, with the p-values presented in Table B-1 in Appendix B. Notably, most
p-values are < 0.05, indicating that the enhanced variants statistically significantly outper-

form the standard CSA in the majority of test cases, thus confirming the superiority of the

101

modified versions.

To further analyze the convergence behavior of the algorithms, Figure 4.2 presents the
convergence curves of CSA, MRCSA, ATCSA, and ECSA for selected test functions. These
curves illustrate the evolution of the fitness value over the iterations. The term "Fitness"
refers to the average of the best solution found up to that iteration over 30 independent runs.
The graphical representation in Figure 4.2 allows for a visual comparison of the convergence
rates and accuracy achieved by each algorithm. It becomes evident from these convergence
curves that the proposed variants exhibit significantly improved convergence rates compared
to the standard CSA. This further corroborates the effectiveness of the suggested techniques

in accelerating the convergence process.

—— csA

—— CcsA 100 <— csa 108
00 MRCSA MRCSA MRCSA
—— ATCSA 10° —— ATCSA 10° —— ATCSA
108 — Ecsa — Ecsa — Ecsa
10 10
P 102) w
g g 108 2
¢ g £ 1w
s £ £
10°
100 10!
10t
107 100
107
102 10
3 150 200 300 200 500 S 150 200 300 00 530 13 150 200 300 400 500
Iterations Iterations Iterations
9
10 —— CSA —— CSA —— CSA
MRCSA o MRCSA 108 MRCSA
—— aTCsa —— atcsa —— arcsA
100 — Ecsa — ECsa 0 — Ecsa
10°
107
£ 210 g
g] g 10
10t 10°
10 o
101 107
1077 1072
3 100 200 300 a00 500 o 100 200 300 00 500 13 100 200 300 a00 500
Iterations Iterations Iterations
T con T csa 1 csa
MRCSA ! MRCSA 10 MRCSA
——— ATCSA 10° —— ATCSA —— ATCSA
— Ecsa — Ecsa — Ecsa
10t
2 o , 100
§ g g
g £ 10 g
107
10
10t
102 102
3 150 200 300 100 530 S 150 200 300 00 500 13 150 200 300 400 530
Iterations Iterations Iterations
(g) F8 (h) F9 (i) F10
o
—— CSA —— CSA R —— CSA
| MRCSA : MRCSA MRCSA
10 —— ATCSA 10 —— ATCSA 107 —— ATCSA
— ecsa — EcsA — Ecsa
s
108 10 105
§ § g
£ £ 10° £ 3
£ 100 g g 1w
10t 10t
107
10 107t
102
3 150 200 300 200 500 S 150 200 300 00 500 13 100 200 300 00 500
Iterations Iterations Iterations
(j) F11 (k) F12 I F13

Figure 4.2: Comparison of convergence curves of CSA and proposed variants obtained in
some of the benchmark problems.

For the diversity analysis, the figures in Figure 4.3 illustrate the diversity curves of the

102

standard CSA and its three enhanced variants: ATCSA, MRCSA, and ECSA across a selec-
tion of unimodal and multimodal benchmark functions (F1, F7, F8, F14, F15, and F21). It is
evident that across all functions, both the basic CSA and ATCSA maintain relatively higher
levels of diversity throughout the iterations compared to the other variants. This consistent
maintenance of higher diversity indicates that these variants preserve exploratory behavior.
Meanwhile, MRCSA and ECSA generally show a faster decline in diversity, which points
to their stronger exploitation capabilities. Although the basic CSA maintains a higher level
of diversity, this does not necessarily result in superior solutions compared to the enhanced
variants, as indicated by the outcomes in Table 4.3 and Figure 4.2. The enhanced vari-
ants, particularly MRCSA and ECSA, demonstrate better overall performance by achieving
a more balanced approach to exploration and exploitation. This balance is indicative of their
ability to find better solutions across various test cases.

When comparing ATCSA to CSA, ATCSA utilizes an adaptive tournament selection ap-
proach, which not only preserves high diversity but also enhances the chances of guiding
crows toward more suitable solutions. This approach facilitates a balance between explo-
ration and intensive exploitation, which is essential for robust algorithm performance in di-
verse problem landscapes. Incorporating the modified random motion strategy into MRCSA
and ECSA, which consider both the best solution obtained so far and the average position
of all solutions, greatly enhances the exploitation capability of the algorithm. This strat-
egy is crucial in reducing diversity at a controlled rate, ensuring that the algorithm does not
miss potential regions in the search space while still focusing more effectively on the most
promising regions.

The findings from the test functions suggest that extremely high diversity, as demon-
strated by the basic CSA, may not always be advantageous, particularly for problems requir-
ing more precise exploitation. The augmented versions, by employing adaptive tournament
selection and modified random movement, maintain a beneficial level of diversity while en-

hancing exploitation capability, thereby leading to superior optimization results.

103

—— CSA
~—— MRCSA
—— TCSA
—— ECSA

—— CSA
~—— MRCSA
—— TCSA

106 4 — ECSA

Diversity
Diversity
-
°...

0 100 200 300 400 500 0 100 200 300 400 500
Iterations Iterations

4x107

3x107

Diversity
Diversity

2x107

0 100 200 300 400 500 0 100 200 300 400 500
Iterations Iterations
(c) F8 (d) F14
108
—— csA 10° T csa
T— MRCSA —— MRCSA
— TCsA o o 1 tcsa
— ECSA 107 T !) ECsA
Fl > 10!
z z
2 2
a 8 10°4
1021
107
]
10 T T H l\ l T T T
0 100 200 300 400 500 0 100 200 300 400 500
Iterations Iterations

Figure 4.3: Comparison of diversity curves of CSA and proposed variants obtained in some
of the benchmark problems.

To sum up, the standard CSA is recognized for its robust exploration capacity but lacks
efficient exploitation mechanisms. It relies on random individuals and probabilities to guide
the search process. Consequently, it often struggles to efficiently exploit the search space,
despite its proficiency in exploration. The modifications proposed in the variants aim to
strike a balance between exploration and exploitation, thereby reducing the risk of premature
convergence to local optima. The findings of the experiments prove that these enhancements
significantly improve the algorithm’s performance, validating the proposed approach and

confirming its effectiveness in balancing exploration and exploitation.

104

4.3.2 Analysis of Island-Based CSA Variants

In this section, the basic structure of the island model is integrated into each CSA variant
to investigate its ability to probe the search domain. Accordingly, four different island-
based variations (iICSA, iMRCSA, iATCSA, and iECSA) have been assessed using the 30-
dimensional standard benchmark functions. Table 4.4 compares the outcomes of the island-
based versions against the corresponding basic versions in terms of fitness values. Succes-
sively, in the majority of cases, the island-based versions declare superior results. In more de-
tail, iCSA performs better than CSA in 82.6% of cases, and it achieves comparable outcomes
in four cases (F16-F19). In 78.2% percent of problems, iMRCSA achieves lower fitness val-
ues than MRCSA, and it achieves similar results in five problems (F14, F16-F19). Besides,
1ATCSA and iECSA have yielded better outcomes than ATCSA and ECSA on 78.2% and
82.6% of problems, respectively. Generally, it is clear from table 4.4 that iECSA outperforms
all other methods. The iECSA has perceived the lowest fitness values across 13 problems out
of 23 problems and it produces comparable outcomes (i.e., a tie) for five cases.

Examining the boxplot findings in Figure 4.4, it can be observed that the suggested
iIECSA frequently offered the smallest median value. The outcomes demonstrate the su-
periority of iECSA in the majority of problems. The convergence trends of CSA, ECSA, and
1IECSA algorithms are displayed in Figure 4.5. It is clear from looking at this figure that the
iECSA has substantially faster convergence rates than the traditional CSA and ECSA meth-
ods. According to the overall ranking rates (F-test) shown in Figure 4.6, we observe that the
iECSA achieves the best rank of 2.26, followed by iMRCSA, MRCSA, iATCSA, ECSA, iCSA,
ATCSA, and CSA, respectively.

Taken together, the testing and comparison findings confirmed the benefits of incorpo-
rating the structure of the island model. Frequent information exchange through migration
mechanisms is essential to empowering the capability to navigate the search space more
effectively. The method of segmenting the population into a number of sub-populations en-
ables island-based MHs to retain several optimal solutions while simultaneously emphasiz-
ing different areas of the search space. The island model is particularly effective at enhancing

global search, and it may be used to investigate promising areas of the search domain by uti-

105

Table 4.4: Comparison of CSA variants and cooperative island-based variants for the
standard 30-dimensional functions

Function Measure CSA iCSA MRCSA iMRCSA ATCSA iATCSA ECSA iECSA
AVG S63E+00 9.78E-01 1.75B-04 3.44E-05 483E-02 8.72E-03 256E-04 3.52E-07
Fl STD 2.69E+00 4.80E-01 2.79E-04 7.25E-05 322E-02 526E-03 525E-04 8.72B-07
AVG 301E+00 131E+00 6.75B-03 2.13E-03 2.83E+00 7.25E-01 3.62E-03 2.77E-04
F2 STD 774E-01 399E-01 8.58E-03 2.10E-03 1.14E+00 226E-01 441E-03 4.27E-04
AVG 2.60E+02 829E+01 7.68E-02 2.05E-02 120E+02 3.39E+01 I.1E01 1.25E-03
F3 STD 836E+01 281E+01 1.53E-01 6.58E-02 4.28E+01 134E+01 440E-01 4.49E-03
AVG SO6E+00 273E+00 4.59E-03 138E-03 639E+00 290E+00 4.22E-03 1L.I2E-04
F4 STD 1456400 5.23E-01 1.02B-02 2.14E-03 1.94E+00 698E-01 825E-03 3.51B-04
AVG 2.60E+02 9.10E+01 4.37E-03 2.61E-04 133E+02 3.90E+01 2.53E-03 1.78E-05
FS STD LI7E+02 448E+01 1.03E-02 4.24E-04 1.04E+02 1.89E+01 7.14E-03 3.79E-05
AVG S88E+00 1.ISE+00 2.07E-04 4.60E-05 S.11E02 834E-03 228E-04 1.03E-06
F6 STD 2.19E+00 5.57E-01 6.05E-04 1.01E-04 291E-02 395E-03 568E-04 2.65E-06
AVG 6.00E-02 837E-03 105E-03 3.86E-04 539E-02 7.1SE-03 8.13E-04 3.48E-04
7 STD 224E-02 330E-03 890E-04 223E-04 2.I8E-02 228E-03 G634E-04 1.83B-04
AVG -651E+03 -731E+03 -126E+04 -126E+04 -6.51E+03 -7.41E+03 -1.23E+04 -1.26E+04
F8 STD 7.05E+02 455E+02 2.90E-01 4.83E-03 8.93E+02 4.54E+02 1.56E+03 1.22E-03
AVG 293E+01 2.12E+01 1.52B-04 3.66E-05 248E+01 205E+01 7.30E-05 1.13E-06
F9 STD L.O4E+01 6.53E+00 2.83E-04 9.60E-05 9.10E+00 5.52E+00 1.98E-04 4.10E-06
AVG 408E+00 226E+00 349E-03 9.73E-04 476E+00 291E+00 1.74E-03 6.30E-05
F10 STD 8.69E-01 526E-01 275B-03 7.72E-04 9.88E-01 656E-01 231E-03 1.06E-04
AVG 1.03E+00 797E-01 5.17E-04 7.84E-05 193E-01 8.66E-02 544E-04 4.22E-06
Fll STD 456E-02 135E-01 132E-03 1.62E-04 7.35B-02 295E-02 126E-03 1.61E-05
AVG 492E+00 1.82E+00 3.00B-06 3.94E07 4.07E+00 342E+00 1.00B-06 1.11E-08
Fi2 STD 237E+00 121E+00 6A9E-06 536E-07 1.77E+00 1.16E+00 3.36E-06 2.87E-08
AVG 575E+00 476E-01 1.02E-04 4.10E-06 2.09E+01 1.12E+00 140E-05 1.05E-07
F13 STD 1.09E+01 2.86E-01 298E-04 7.86E-06 1.75E+01 839E-01 3.62E-05 4.13B-07
AVG 1.02E+00 9.98E-01 9.98E-01 9.98E-01 1.IIE+00 9.98E-01 9.98E-01 9.98E-01
Fl4 STD 129601 355E-16 3.71E-16 339B-16 425E-01 339E-16 339E-16 3.39E-16
AVG 44204 3.07E-04 395E-04 3.07E-04 4G6IE-04 3.07E-04 182E03 3.10E-04
F15 STD 354E-04 3.16E-13 326E-04 746E-15 3.10E-04 7.84E-10 5.16E-03 7.55E-06
AVG -LO3E+00 -1.03E+00 -1.03E+00 -103E+00 -1.03E+00 -1.O3E+00 -1.03E+00 -1.03E+00
F16 STD 6.78E-16 128E-14 678E-16 6.78E-16 6.78E-16 6.78E-16 G.78E-16 6.78E-16
AVG 398E-01 398E-01 398E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01
F17 STD L13B-16 622E-15 1.I13E-16 1.13E-16 1.13B-16 LI3E-16 1.I3E-16 1.I3E-16
AVG 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.90E+00 3.00E+00
F18 STD 349E-15 827E-15 195E-15 7.54E-15 257E-15 452E-16 4.93E+00 4.52B-16
AVG ~ -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00
F19 STD 1.36B-15 136E-15 136E-15 136E-15 1.36E-15 1.36E-15 136E-15 136E-15
AVG -330E+00 -3.32E+00 -3.15E+00 -3.31E+00 -327E+00 -3.32E+00 -3.08E+00 -3.29E+00
F20 STD 452E-02 288E-11 134E-01 842E-03 6.07E-02 4.40E-15 229E-01 4.90E-02
AVG -8.66E+00 -1.02E+01 -898E+00 -1.02E+01 -8.57E+00 -1.02E+01 -7.72E+00 -1.02E+01
F21 STD 3.04E400 7.63E-12 2.61E+00 1.64E-13 2.97E+00 181E-15 340E+00 6.27E-03
AVG 975E+00 -LOAE+01 9.13E+00 -1.04E+01 -1.04E+01 -1.04E+01 -9.60E+00 -1.04E+01
F22 ATD 2.02B4+00 1.74E-12 2.65E+00 6.69E-10 9.03E-15 9.03E-15 2.14E+00 2.98E-02
AVG -1.00E+01 -LOSE+01 -948E+00 -1.05E+01 -1.00E+01 -1.0SE+01 -8.72E+00 -1.05E+01
X STD 1.94E+00 249E-12 273E+00 9.31E-13 1.94E+00 9.03E-15 3.01E+00 2.16B-02
Mean rank 6.63 476 430 261 633 441 470 2.26

lizing the advantages of the best individuals of the relevant sub-population.

4.3.3 Scalability Analysis

In this part, a scalability analysis is carried out to explore the influence of problem dimension
on the outcomes of CSA variants. This test has been used in earlier studies and can show
how dimensions affect the quality of solutions for the different optimizers to understand their
efficacy for problems with lower and higher dimensions. In addition, it demonstrates how
population-based MHs can maintain its search benefits in greater dimensions [39]. For this
purpose, the scalable unimodal and multimodal test cases (F1-F13) with 30, 100, and 500

dimensions are handled using the different CSA variants. These functions are considered in

106

100 = == Csa =Ty o == csa
= = ECsA 100 I ECSA 10t = ECsA
107 [iECSA == iEcsA = iEcsA

1

o
-
e
e
-
— (-

csa ECSA IECSA csa ECSA IECSA csA ECSA IECSA

— = CSA 10° J— [== eI o [csA
- == EcsA [ECsA 100 = EcsA

10 =3 iEcsa =3 iEcsa =3 iEcsA

— -
-
— |-
— Tk
—
-

csa ECSA iECSA csA ECSA iECSA csA ECSA IECSA

10t == CsA 102 = ==Y = jm—CSA
- ECSA [ECSA [ECSA
[iECSA 10° = iECSA [iECSA

— -

— -
—{}

-

csa ECSA IECSA csA ECSA IECSA csA ECSA iECSA

- = csa 10t = = csa . 3 = csa
[ECSA [ECSA 10 === [ECSA
[iECSA 107 [iECSA 10t [iECSA

-
K

-
— -
L

f;g;l
107
1071

csa ECSA IECSA csA ECSA iECSA csA ECSA IECSA

(j) F11 (k) F12 () F13

Figure 4.4: Box-plots of CSA, ECSA, IECSA on some of the standard benchmarks

this experiment because their mathematical formulations provide us the ability to adjust the
number of design variables.

The results of the iECSA in comparison to other CSA variants while handling the stan-
dard scalable functions are outlined in Tables 4.5 and 4.6. It can be seen that the iIECSA is
capable of revealing outstanding findings across all dimensions, and its performance con-
tinues to be reliably superior even when dealing with problems that involve a large number
of variables. The higher performance of this optimizer is demonstrated by the fact that the
iECSA has the potential to significantly outperform other methods and provide the best re-
sults for 56.5% of 30-dimensional functions (as shown in Table 4.3). According to Tables 4.5
and 4.6, when we have a search space with 100, and 500 dimensions, the results obtained by
iECSA are noticeably superior to those obtained by other methods when dealing with 100%

of F1-F13 functions. As shown by the curves in Figure 4.7, it can be seen that as the dimen-

107

— csa

— csa 1 — csa 10°
10t £csA ECsa £csa
— iEcsa 100 — iEcsa 10° — iEcsa
10°
10 10°
10°
" 9
3 100 10
g0 £ 10
10° 10
100 200
100
107 107
10
102 107
3 100 200 300 a00 500 o 100 200 300 00 500 13 100 200 300 a00 500

Iterations Iterations Iterations

Fitness
Fitness

(a) F1 (b) F2 (c) F3

— csa — csa — csa
Ecsa . £Csa o0 EcsA
— iecsa — ecsa — iecsa
10! 10°
10°
P w w 107
g g H
H H g0
. o
o 10 10
107
10
107 102
3 W 200 %0 a0 B S 100 20 a0 a0 st0 o W 20 w0 a0 st0
Iterations erations Tterations
— — csa — csa
£csa Ecsa 108 £csA
—— IECSA 10? —— iECSA —— IECSA
10t
2 o , 100
H 2 e £
1070
107
0t
1072 1072
5 W0 200 0 a0 500 S Wo 200 0 o sto 3 W 20 w0 a0 sto
terations erations terations
(g) F8 (h) F9 (i) F10
—— CSA —— CSA 0 —— CSA
| £csA : ecsa £csA
10 ~—— iECSA 10° —— iECSA 107 —— iECSA
10! 10° 10
g L £ 0
2 a0 £ g w0
10t 100
107
107! 107
107
5 W 20 0 a0 s0 S W 20 0 o sto 3 W0 20 w0 a0 sto
Iterations Terations terations

(j) F11 (k) F12) F13
Figure 4.5: Comparison of Convergence Curves for CSA, ECSA, and iECSA on some of
the standard benchmark problems.
sions increase, the outcomes of some other approaches are degraded. This demonstrates that
iECSA can successfully maintain a balance between exploration and exploitation tendencies

in problems with higher dimensions.

108

[92] o
© o)
© o
[Ce]
N R -
v < < < R
b= < <
<
o
Z
w —
(Vo)
s ~ Q
~
CSA ATCSA ICSA ECSA IATCSA MRCSA IMRCSA IECRSA
ALGORITHM
Figure 4.6: Friedman mean rank based on results in Table 4.4
Table 4.5: Results of benchmark functions F1-F13 with 100 dimensions
Function Measure CSA iCSA MRCSA IMRCSA ATCSA iATCSA ECSA IECSA
AVG 638E+02 2.17E+02 127B-03 236E-04 L.15E+02 2.90E+01 7.22E-04 3.73E-06
Fl STD 1.O7E+02 3.77E+01 4.00E-03 4.64E-04 2.13E+01 631E+00 1.62E-03 8.20E-06
AVG 2.49E+01 138E+01 1.65E-02 8.40E-03 149E+01 7.87E+00 1.67E-02 1.08E-03
F2 STD 224E+00 124E+00 1.83E-02 9.48E-03 1.87E+00 1.03E+00 1.86E-02 1.60E-03
AVG 584E+03 206E+03 5.75E+00 4.04E-01 3.17E+03 1.23E+03 1.86E+00 3.73E-03
F3 STD 1I5E+03 3.05E402 147E+01 5.12E-01 4.49E+02 2.04E+02 2.86E+00 5.27E-03
AVG 128E+01 7.21E+00 5.24E-03 1.67E-03 1.26E+01 7.59E+00 6.33E-03 5.79E-05
F4 STD 1.55E+00 527E-01 1.I6E-02 236E-03 1.56E+00 847E-01 1.01E-02 1.30E-04
AVG 1.99E+04 3.93E+03 195E-02 1.56E-03 241E+03 743E+02 6.62E-03 5.05E-05
F5 STD 475E+03 8.93E+02 3.04E-02 284E-03 S.04E+02 1.51E+02 129E-02 1.36E-04
AVG 6.09E+02 222E+02 I.1IE-03 9.99E-05 1.12E+02 2.99E+01 7.12E-04 5.93E-06
F6 STD 932E+01 4.85E+01 3.85E-03 1.51E-04 220E+01 8.72E+00 1.18E-03 1.74E-05
AVG 410E-01 677E-02 L.I19E-03 4.87E-04 341E-01 502E02 9.42E04 4.00E-04
F7 STD 9.41E-02 157E-02 834E-04 263E-04 627E-02 1.I6E-02 598E-04 2.74E-04
AVG -148E+04 -1.68E+04 -4.19E+04 -4.19E+04 -1.77E+04 -1.89E+04 -4.19E+04 -4.19E+04
F8 STD 1.52E+03 7.71E402 3.29E-01 2.90E-02 2.14E+03 144E+03 2.48E-01 1.65E-03
AVG 3.07E+02 2.61E+02 7.61E-04 574E05 150E+02 1.24E+02 292E-04 1.79E-06
F9 STD 4.13E+01 440E+01 1.33E-03 1.06E-04 2.82E+01 240E+01 830E-04 3.94E-06
AVG 6.12E+00 423E+00 321E-03 1.23E-03 628E+00 3.95E+00 1.10E-03 1.50E-04
F10 STD 6.15E-01 3.51E-01 340E-03 1.11E-03 7.40E-01 2.83E-01 1.71E-03 3.89E-04
AVG 6.68E+00 3.22E+00 4.48E-04 9.02E-05 204E+00 127E+00 225E-04 1.01E-05
Fll STD 9.12E01 3.55E-01 1.04E-03 144E-04 194B-01 5.19E-02 4.15E-04 3.42E-05
AVG 8.17E+00 3.40B+00 1.71E-06 1.65E-07 6.70E+00 2.89E+00 6.82E-07 1.21E-08
F12 STD 1.30E+00 8.61E-01 3.05E-06 340E-07 221E+00 120E+00 1.92E-06 4.22E-08
AVG 139E+02 3.81E+01 896E-05 651E-06 1.29E+02 3.94E+01 8.84E-05 2.00E-07
F13 STD 1.89E+01 6.82E400 2.58E-04 1.53E-05 1.54E+01 5.12E+00 2.73E-04 5.89E-07

4.3.4 Sensitivity Analysis of iECSA to its Migration Parameters

This part of the experiment aims to examine the impact of various parameters on the per-
formance of the proposed iECSA algorithm. In this regard, different experimental scenarios
were designed based on a simple design technique where we start with a common configura-
tion and alter one parameter at a time to evaluate how that parameter impacts the performance
[196]. These scenarios include three parameters: the population size (N), the migration fre-

quency (My), and the migration rate (M,). These parameters are selected because their impact

109

1.00E+04 1.00€+03 1.00E+06
—B-CSA —e—iCSA
L.O0E+03 1.00E402 100E+05 | s MRCSA iMRCSA
1.00E+02 i
Looksoq | T ATCSA @ iATCSA
1.00E+01, 1.00E+01 ——ECSA ——iECS
1.00E+00 ——CSA —#—iCSA —m-CSA —e—iCSA 1.00€+03
g ~#— MRCSA iIMRCSA 1.00E400 —4— MRCSA IMRCSA
1.00E-01 —H#—ATCSA —@— IATCSA . % ATCSA —@—IATCSA 1.00E+02
—+—ECSA —=— {ECSA M
1.00E-02 L00E01 —FECSA ——iECsA 100E+01
1.00€-03 7/ o
1.00E-04 1.00E-02
1.00€-01
1.00E-05 10003
1.00E-06 . 1.00€-02
1.00E-07 1.00E-04 1.00€-03
3 100 500 30 100 500 30 100 500
DIMENSION DIMENSION DIMENSION
1.00E+02 1.00E+06 1.00E+04
L 100E+05 1.00E+03
1.00E+01,
1.00€+04 1.00E+02
Lok ~m-CSA —4—iCsA 1006403
-00E+00 —4— MRCSA IMRCSA TacsA —e—iCSA 1.00E+01 ~m-CSA —o—iCsA
LooEo1 - ATCSA —0—ATCSA L.00E+02 A MRCSA - IMRCSA 100E+00 L hRes e
) —+—ECSA —=—iECSA 1.00E+01 % ATCSA —@— iATCSA ~#—ATCSA —®—iATCSA
! 1.00E-01 ——ECSA ——IECSA
1.006-02 1.00E+00 ——ECSA ——iECSA
! —— 1.00€-02
— ——— 1.00E-01
1o Looe02 ‘/}_‘/‘///‘ g
1.00€-03 1.00€-04
100804 —ou
tooeos | 1.00€-05
1.00E-05 1.00E-05 1.00E-06
3 100 500 30 100 500 30 100 500
DIMENSION DIMENSION DIMENSION
1.00E+01, 0.00€+00 1.00E+04
1.00E+03
1.00E+00 -5.00E404 1.00E+02
¥ ~W-CSA —4—iCSA
B-CSA —e—iCSA 10001 —4— MRCSA IMRCSA
1.00E-01 -1.00E+05 | —A— MRCSA iMRCSA 1.00E+00 “H—ATCSA —@—IATCSA
—e—iCSA —%—ATCSA —&—IATCSA L o0E01 ——ECSA —— ECSA
—4— MRCSA iIMRCSA ——ECSA ——iECSA }
1.00E-02 ~#—ATCSA —@—iATCSA 1508405 1.00€-02
——ECSA ——iECSA L00E03 //
1.00£:03 -2.00€+05 1.00E-04 /
1.00€-05
1.00E-04 -2.506405 1.00E-06
30 100 500 30 100 500 30 100 500
DIMENSION DIMENSION DIMENSION
(g) F7 (h) F8 (i) Fo
1.00E+01 1.00E+02 1.30E+01
1.00E400 1.00E+01 1.10E+01
“m-CSA —e—iCSA 10000
L00E-01 4~ MRCSA iIMRCSA —m— CSA —e—iCSA 9.00E+00
. —H—ATCSA —@—IATCSA 1.00€-01 —4— MRCSA IMRCSA
——ECSA —— ECSA - ATCSA —@—IATCSA 7.00E400
1.00E-02 1.00E-02 ECSA {ECSA
L 5.00E400
1.00E-03
100803 ||
100E.08 3006400 3
tooeos | —— | teeos | | 1.00E+00
1.00E-05 1.00E-06 -1.00€400
30 100 500 30 100 500 30 100 500
DIMENSION DIMENSION DIMENSION
(j) F10 (k) F11) F12
1.00E+04
1.00E+03
1.00€+02
1.00€+01
1.00E+00 —m-CSA —e—iCsA
1.00E-01 —4— MRCSA IMRCSA
L0002 —#—ATCSA —®— IATCSA
. ——ECSA ———iECSA
1.00€-03
1.00E-04 A
1.00E-05
1.00€-06
1.00E-07
30 100 500
DIMENSION

(m) F13

Figure 4.7: Scalability results of the CSA variants in dealing with F1-F13 functions with

different dimensions

110

Table 4.6: Results of benchmark functions F1-F13 with 500 dimensions

Function Measure CSA iCSA MRCSA iMRCSA ATCSA iATCSA ECSA iECSA
AVG 9.91E+03 4.22E+03 6.86E-03 1.57E-03 3.98E+03 1.64E+03 3.28E-03 4.02E-05

Fl STD 6.80E+02 3.58E+02 2.51E-02 4.85E-03 247E+02 1.44E+02 8.71E-03 1.10E-04
AVG 1.81E+02 1.19E+02 9.80E-02 3.44E-02 1.20E+02 7.81E+01 7.07E-02 6.62E-03
F2 STD 7.26E+00 5.50E+00 1.87E-01 3.74E-02 5.14E+00 3.88E+00 9.49E-02 9.76E-03
AVG 1.48E+05 5.42E+04 8.01E+01 3.45E+01 8.84E+04 3.46E+04 4.68E+02 5.58E-01
F3 STD 2.34E+04 7.77E+03 1.46E+02 7.00E+01 9.09E+03 4.48E+03 9.45E+02 1.08E+00
AVG 1.85E+01 1.11E+01 4.31E-03 9.63E-04 1.82E+01 1.05E+01 2.04E-03 1.17E-04
F4 STD 1.30E+00 6.88E-01 9.55E-03 9.82E-04 1.56E+00 4.66E-01 4.70E-03 2.83E-04
AVG 5.39E+05 1.19E+05 1.05E-01 9.94E-03 1.16E+05 3.05E+04 4.60E-02 1.04E-04
FS STD 6.82E+04 1.68E+04 2.14E-01 1.98E-02 1.27E+04 4.45E+03 1.20E-01 2.06E-04
AVG 9.77TE+03 4.34E+03 6.91E-03 6.15E-04 4.10E+03 1.74E+03 1.59E-03 2.69E-05
F6 STD 6.25E+02 5.10E+02 1.37E-02 1.50E-03 2.55E+02 1.63E+02 2.96E-03 7.80E-05
AVG 5.20E+00 1.38E+00 1.21E-03 5.33E-04 296E+00 6.91E-01 1.14E-03 3.66E-04
F7 STD 6.70E-01 2.59E-01 7.65E-04 2.81E-04 2.85E-01 1.31E-01 8.28E-04 2.06E-04
AVG -3.32E+04 -3.63E+04 -2.09E+05 -2.09E+05 -3.70E+04 -4.60E+04 -2.09E+05 -2.09E+05
F8 STD 4.92E+03 247E+03 1.73E+01 1.69E-01 7.51E+03 4.82E+03 2.19E+00 4.61E-02
AVG 3.34E+03 3.21E+03 6.45E-03 2.79E-04 2.66E+03 2.51E+03 1.07E-03 1.62E-05
F9 STD 1.16E+02 8.03E+01 1.54E-02 4.08E-04 9.53E+01 8.39E+01 3.10E-03 3.47E-05
AVG 7.04E+00 5.38E+00 2.75E-03 8.08E-04 6.29E+00 4.55E+00 1.41E-03 1.66E-04
F10 STD 2.03E-01 1.45E-01 3.25E-03 6.20E-04 2.71E-01 1.50E-01 2.44E-03 3.90E-04
AVG 8.79E+01 3.98E+01 1.36E-03 2.03E-04 3.75E+01 1.62E+01 6.06E-04 3.40E-06
Fil STD 5.47E+00 3.52E+00 2.74E-03 3.65E-04 2.58E+00 1.47E+00 1.31E-03 8.03E-06
AVG 1.16E+01 4.61E+00 2.86E-06 5.50E-08 8.11E+00 2.88E+00 4.78E-07 6.65E-09
F12 STD 1.34E+00 4.70E-01 1.07E-05 1.17E-07 1.20E+00 4.22E-01 = 9.49E-07 1.57E-08
AVG 1.23E+03 3.24E+02 2.04E-04 2.29E-05 5.80E+02 2.44E+02 1.14E-04 1.34E-06
F13 STD 478E+02 3.64E+01 4.62E-04 5.70E-05 3.13E+01 2.15E+01 4.38E-04 5.52E-06

on several island models is statistically significant, as proved in previous studies [53]. The
simple factorial design consisting of nine experiments is shown in Table 4.7. The first three
experiments were employed to assess how N affected the functionality of iECSA. To assess
how M, affected the functionality of iECSA, the second three experimental situations were
employed. The impact of M, on the performance of iECSA was finally assessed using the
final three experimental situations. Similar experimental designs were used in previous stud-
ies to assess the efficacy of iHS [193], iBAT [54], and iWOA [55]. For each configuration,
the results are summarized over 30 trials and 500 iterations. It is important to note that the

optimal settings in this stage are utilized for the following experiments.

Table 4.7: The experimental design for evaluating the sensitivity of iECSA N, Mg, and M,
parameters

Experiment Number | N | Mf | Mr
1 30
2 50 1100 | 0.3
3 70
4 25
5 70 | 50 |03
6 100
7 0.1
8 70 | 100 | 0.2
9 0.3

111

1. Impact of population size In this experiment, three alternative values N=30, N=50,
and N=70 are used to examine the impact of the number of crows (N) on the perfor-
mance of the suggested iECSA algorithm. The other iECSA parameters are fixed in
this experiment, thus, three scenarios have been developed, as shown in Table 4.7. It is
important to notice that the results acquired by Sen1 are identical to those obtained in
the earlier experiments. Table 4.8 presents the experimental results of the iIECSA when
dealing with the standard 30-dimensional test functions in terms of average fitness val-
ues. Evidently, Sen3 can provide the best solutions for 9 of the 23 test functions, and it
scores comparable outcomes in 9 cases. As per mean rank, Sen3 provides the optimal
rank of 1.61 followed by Sen2 (rank of 1.87) and Senl (rank of 2.52). This is because
wider coverage of the search space regions results in higher N values. So, there are
more options to find effective solutions. For the following experiments, the value of N
for each incorporated ECSA algorithm in the iECSA model is set to 70 because this

strategy produced the best results.

Table 4.8: The impact of population size on the convergence behavior of iECSA

Function Senl Sen2 Sen3
N=30 N=50 N=70
F1 3.52E-07 4.54E-07 1.78E-07
F2 2.77E-04 1.15E-04 1.05E-04
F3 1.25E-03 1.45E-04 1.12E-04
F4 1.12E-04 1.09E-04 9.49E-05
F5 1.78E-05 6.48E-06 2.40E-06
F6 1.03E-06 1.45E-07 2.93E-07
F7 348E-04 221E-04 2.26E-04
F8 -1.26E+04 -1.26E+04 -1.26E+04
F9 1.13E-06 1.81E-07 3.59E-08
F10 6.26E-05 4.91E-05 7.09E-05
F11 422E-06 6.83E-07 5.23E-07
F12 1.11E-08 2.21E-09 9.22E-10
F13 1.05E-07 7.16E-08 3.37E-08
F14 9.98E-01 9.98E-01 9.98E-01
F15 3.10E-04 3.07E-04 3.07E-04
F16 -1.03E+00 -1.03E+00 -1.03E+00
F17 398E-01 3.98E-01 3.98E-01
F18 3.00E+00 3.00E+00 3.00E+00
F19 -3.86E+00 -3.86E+00 -3.86E+00
F20 -3.29E+00 -3.32E+00 -3.32E+00
F21 -1.02E+01 -1.02E+01 -1.02E+01
F22 -1.04E+01 -1.04E+01 -1.04E+01
F23 -1.05E+01 -1.05E+01 -1.05E+01
Mean Rank 2.52 1.87 1.61

The behavior of the proposed technique in terms of convergence and diversity after 500

112

iterations with different N values is depicted in Figure 4.8. In terms of convergence behavior,
it can be demonstrated that the convergence of the iECSA members becomes better as N
increases. In terms of diversity behavior, it is consistent with convergence behavior in that
a bigger N value results in better diversity behavior. In other words, diversity is maintained

throughout the search considerably more effectively when the value of N is high.

— N=30 — N=30
—— N=50 —— N=50
% 10° % 10° 4
: :
10? 1074
10! 10t
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Iterations Iterations
(a) F5-convergence behaviour (b) F5-diversity behaviour
1072 —— N=30 10° 4 — N=3g
— N= g M ~—— N=5
— T e e —
10744 . 102
i%’ 107° g
10%
10°°
1077
10° 4
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Iterations Iterations
(¢) F9-convergence behaviour (d) F9-diversity behaviour
L N=30 10° 4 — N=30
0] — e Er T oo —
1075 4 10
g 10 ‘E
g g 104
= o
1077 4
1084 10?4
107° 4
160 15‘0 260 ZgD 360 35‘0 460 450 560 160 15‘0 260 25‘0 360 3%0 460 4_“30 560
Iterations Iterations
(e) F12-convergence behaviour (f) F12-diversity behaviour

—— N=30

1.4x10° —— N=30 —— N=50
135 x 10° N=50 N=70
— N=70
1.3x10° 1
1.25 x 10°
$ 12x10°
s
& 1.15x10°
1.1x10°
10°
1.05 x 10°

10°

-
3

Diversity

100 150 200 250 300 350 400 450 500

100 150 200 250 300 350 400 450 500
Iterations

Iterations

(g) F14-convergence behaviour (h) F14-diversity behaviour

Figure 4.8: The convergence and diversity plots of iECSA using different values of
population size

2 Impact of migration frequency: In this part, the influence of the migration frequency

113

(M) factor on the behavior of the proposed iECSA is investigated using three different
experimental scenarios. These scenarios are constructed using different values of My,
such as Send (M = 25), Sen5 (My = 50), and Sen6 (M; = 100). When the value of
My, for instance, is set to 50, this indicates that the migration process is activated after
every 50 iterations (i.e., 10 times during the allowed 500 iterations). Please note that
the remaining parameters of the suggested scenarios also stay the same as they are
in Table 4.7. The experimental findings obtained utilizing the three aforementioned
scenarios are reported in Table 4.9. In general, it is observed that the effectiveness of
the iECSA is significantly influenced by the value of the My. In specific, Sen6 (M
= 100) clearly provides the best solutions for 15 of the 23 test functions (the optimal
ranking of 1.52). In contrast, the iIECSA method performs worse when the parameter
M has a lower value. It is clear that frequent migration at close intervals reduces the
effectiveness of the algorithm. As a result, the recommended value of the parameter
My, which allows the iECSA algorithm to navigate the search space while balancing
exploration and exploitation, is 100. Therefore, in the following experimental work,

this value will be set.

Table 4.9: The impact of migration frequency on the convergence of iECSA

Function Send Sen5 Sen6
MfF=25 MfF=50 Mf=100

F1 8.778E-07 7.055E-07 1.780E-07
F2 3.727E-04 2.806E-04 1.050E-04
F3 2.071E-04 2.401E-04 1.121E-04
F4 2.050E-04 1.655E-04 9.490E-05
F5 1.567E-05 1.680E-05 2.400E-06
F6 4.410E-07 4.650E-07 2.930E-07
F7 2.413E-04 2.247E-04 2.256E-04
F8 -1.257E+04 -1.257E+04 -1.257E+04
F9 3.732E-07 3.205E-07 3.590E-08
F10 1.595E-04 9.603E-05 7.090E-05
F11 8.166E-07 9.723E-07 5.230E-07
F12 1.452E-08 3.262E-09 9.220E-10
F13 8.834E-08 6.529E-08 3.370E-08
F14 9.980E-01 9.980E-01 9.980E-01
F15 3.075E-04 3.075E-04 3.075E-04
F16 -1.032E+00 -1.032E+00 -1.032E+00
F17 3.979E-01 3.979E-01 3.979E-01
F18 3.000E+00 3.000E+00 3.000E+00
F19 -3.863E+00 -3.863E+00 -3.863E+00
F20 -3.322E+00 -3.322E+00 -3.322E+00
F21 -1.015E+01 -1.015E+01 -1.015E+01
F22 -1.040E+01 -1.040E+01 -1.040E+01
F23 -1.054E+01 -1.054E+01 -1.054E+01
Mean Rank 2.35 2.13 1.52

114

. mf=25 4x10*
T e
3x10*
102 4
0] g
2x10*
1075 4
100 150 200 250 300 350 400 450 500 200 250 300 350 400 450 500
Iterations Iterations
(a) F5-convergence behaviour (b) F5-diversity behaviour
102 —— mf=25 10°
—— mf= .
—_ mf=igo 9x10
10744 8x 102
" o 7x10?
§ 1075 4 2
2 % 6x 102
1076 4
5x10%
1077 4
160 150 260 2%0 360 3%0 460 4%0 560 4x10t 200 250 300 350 400 450 500
Iterations Iterations
(c) F9-convergence behaviour (d) F9-diversity behaviour
—— mf=25 10°
o] e o
8x10%
" 10764 5 7x10¢
£ 1074 -g 6x10°
1078 4 5x10%
102 |
160 15‘0 260 2%0 360 35‘0 460 4%0 560 4x10t7 200 250 300 350 400 450 500
Iterations Iterations
(e) F12-convergence behaviour (f) F12-diversity behaviour
3x10%
1.1x10° —— mf=25
—— mf=50
1.08 x 10° —T— mf=100
1.06 x 10° 2
a‘ff_ 1.04 x 10° '% 2x10%
1.02 x 10°
10°
100 150 200 250 300 350 400 450 500 200 250 300 350 400 450 500
Iterations Iterations
(g) Fl4-convergence behaviour (h) F14-diversity behaviour

Figure 4.9: The convergence and diversity plots of iECSA using different values of
migration frequency

The convergence curves confirm that a higher value of the M results in a better conver-
gence rate. According to the diversity behavior, it is evident that the iECSA maintains high
diversity before rapidly decreasing it for a short period of time when migration is triggered.
This is due to the fittest individuals from the source islands replacing the worst individuals,
which empowers the exploitation potential. However, when the value of My is 100 (i.e.,

when the migration process is triggered five times within the allowed 500 iterations), the

115

iECSA retains better diversity behavior.

3 Impact of migration rate: Three experimental scenarios are set up in this part to in-
vestigate the impact of M, on the performance of iECSA. In these cases, the parameter
M, is examined using three different values: M, = 10% (Sen7), M, = 20% (Sen8), and
M, =30% (Sen9). It should be remembered that M, decides how many migrants are
transferred between islands. When M, = 30%, for instance, this indicates that 30% of
the source island individuals are selected to be exchanged. It should be noted that the
other parameters are fixed to the best settings obtained in the previous experiments.
Table 4.10 displays the experimental outcomes of the iECSA using different values of
M, for the standard benchmarks. The iECSA with M, of 0.1 achieves the optimal rank

of 1.74 with the best results on 12 out of 23 cases.

Table 4.10: The impact of migration rate on the convergence of iIECSA

Function Sen7 Sen8 Sen9
mr=0.1 mr=0.2 mr=0.3
F1 7.67E-08 1.92E-07 1.78E-07
F2 1.08E-04 1.71E-04 1.05E-04
F3 4.19E-05 1.53E-04 1.12E-04
F4 4.96E-05 7.77E-05 9.49E-05
F5 8.64E-06 4.95E-06 2.40E-06
F6 2.92E-07 3.58E-07 2.93E-07
F7 2.15E-04 2.16E-04 2.26E-04
F8 -1.26E+04 -1.26E+04 -1.26E+04
F9 1.06E-07 1.62E-07 3.59E-08
F10 4.62E-05 4.82E-05 7.09E-05
Fl11 3.27E-07 5.08E-07 5.23E-07
F12 1.38E-09 1.91E-09 9.22E-10
F13 2.62E-08 1.07E-08 3.37E-08
F14 9.98E-01 9.98E-01 9.98E-01
F15 3.07E-04 3.07E-04 3.07E-04
Fl16 -1.03E+00 -1.03E+00 -1.03E+00
F17 398E-01 3.98E-01 3.98E-0Ol
F18 3.00E+00 3.00E+00 3.00E+00
F19 -3.86E+00 -3.86E+00 -3.86E+00
F20 -3.32E+00 -3.32E+00 -3.32E+00
F21 -1.02E+01 -1.02E+01 -1.02E+01
F22 -1.04E+01 -1.04E+01 -1.04E+01
F23 -1.0SE+01 -1.05E+01 -1.05E+01
Mean Rank 1.74 2.22 2.04

A graphic representation of the convergence and diversity curves, utilizing various values
of the migration rate, is provided in Figure 4.10. It is evident from the convergence curve that
a lower M, value yields a better convergence rate. In terms of diversity behavior, it is clear

that iECSA with various maintains a high diversity. However, when the migration is initiated,

116

the diversity drops significantly when M, = 30% compared to smaller M, values. These
findings affirm that a large value of M, reduces the diversity of the island members, which
increases the likelihood of early convergence since if we interchange the fittest solutions, the

majority of islands may converge to the same solutions.

—— mr=0.1
mr=0.2
—— mr=0.3

— mr=0.1
mr=0.2
— mr=03 4% 10

1014

Fitness
Diversity

100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500
Iterations Iterations

(a) F5-convergence behaviour (b) F5-diversity behaviour

T mr=0l —— mr=0.1
1034 mr=0.2 mr=0.2
T mr=03 — mr=03

10744

Diversity

1054

Fitness

1054

4 %102

10774

100 150 200 250 300 350 400 450 500

100 150 200 250 300 350 400 450 500
Iterations

Iterations

(¢) F9-convergence behaviour (d) F9-diversity behaviour

i——— 10° Ll — mr=0.1
mr=0.2 ! i mr=0.2
— mr=03 — mr=0.3

1054

10764

Diversity
-
3

Fitness

1074

10784

1024

103

100 150 200 250 300 350 400 450 500

100 150 200 250 300 350 400 450 500
Iterations

Iterations

(e) F12-convergence behaviour (f) F12-diversity behaviour

Figure 4.10: The convergence and diversity plots of iECSA using different values of
migration rate

4.3.5 Comparison of iECSA with Well-Established Methods

Following a thorough investigation of the suggested iECSA, the next step involves evaluating
how well the proposed method performs in comparison to 17 well-established and recent op-
timizers. These comparison methods encompass a diverse set of optimization categories, in-
cluding swarm-based, evolutionary-based, math-based, and physics-based algorithms [235].
The swarm-based category includes Aquila Optimization (AO) [228], Bat-inspired Algo-
rithm (BAT) [126], Capuchin Search Algorithm (CapSA) [46], Grey Wolf Optimizer (GWO)

117

[127], Hunger Games Search (HGS) [131], Harris Hawks Optimization (HHO) [39], Jaya Al-
gorithm [236], Moth-Flame Optimization (MFO) [128], Particle Swarm Optimization (PSO)
[31], Slap Swarm Algorithm (SSA) [237], and Whale Optimization Algorithm (WOA) [80].
The evolutionary-based category comprises Differential Evolution (DE) [105] and Flower
Pollination Algorithm (FPA) [231]. The math-based category encompasses Arithmetic Opti-
mization Algorithm (AOA) [230], Sine Cosine Algorithm (SCA) [227], and Success History
Intelligent Optimizer (SHIO) [232]. The physics-based category is represented by Equilib-
rium Optimizer (EO) [229]. The selection of these algorithms was based on their representa-
tion of distinct MH classes in terms of inspiration and mathematical formulation. Moreover,
they incorporate both newly developed methods like HHO, HGS, AOA, SHIO, CapSA, and
AO, along with widely adopted optimizers like DE, PSO, and GWO, ensuring a compre-
hensive evaluation across various optimization paradigms. The optimizers’ parameters were
adjusted in accordance with the settings suggested in previous related studies. Descriptions
and specifics of the parameter settings applied in this work are detailed in Section 4.1.2. It is
noteworthy that the algorithms under comparison were written in Python using the provided
source codes for each individual algorithm as well as the fundamental ideas described in
their original articles. Then, in order to permit a thorough examination, these implementa-
tions were incorporated into our framework.

The data presented in Table 4.11 provides the outcomes of a comparative analysis be-
tween IECSA and other MAs across F1-F23 functions. The average and standard deviation
of the best-obtained fitness values for 30 independent runs are reported. In this context, the
symbols "W","L", and "T" (refers to Win, Loss, and Tie) are employed to signify that iIECSA
demonstrates superior, inferior, or equivalent performance to the corresponding algorithm.
The "Mean rank" metric, which represents the algorithm’s average ranking, is derived from
the Friedman test. It is clear from Table 4.11 that the iIECSA performs noticeably better than
other approaches for the majority of the test cases with the lowest overall ranking of 4.89.
Specifically, the iIECSA outperforms its competitors by achieving the lowest fitness results
across 10 functions. It becomes clear from pair-wise comparisons of iECSA and each of

the other methods that iECSA consistently outperforms them over a notable range of cases,

118

68y €66 6€°€1 €811 966 'L 158 68°9 £'8 609 oL'L LOE1 86'L 86'6 L£6 L87T1 006 181 uzy ueay
- OLOL /061 ON/ET O//S] ELEL OLOL 09T OO/£T O/ST O/S/RL ONO/ET b6l O/ET O/T O//ET Ofbi6l 00/ST Lum
SI-HE0G 00+AELT 00+HOL'E [0H8L'E 00+HIS'E 00+A9E'E 00+HEYT TO-A08E €0HO9'L 00+A89'l [0-4L8'6 00+HTST O0+HCLT 00+HOTE O0+HSY'l O0+HGI'T 00+H00'0 00+H99'E dLS czd
10+950°1- 00+308°6- 00+886'9- [0+HT0'l- 00+HSI'S- Q0+HEGL 00+AVG'6- 10+FSOI- [10+ES0'l- 00+HE'S- 10+dr0'l- 00+H00°S- 00+HG0'6- O00+HES'S- 10+H00'1- 00+H6E6- T0+ASOI- 00+H68'S- DAV
SIFE06 109186 00+A6EE 10-ASTT 00+AI6T 00+HESE 00+H6ET CO-HOPE €0-A8ET 00+ATY'l 00+ATY'l 00+H9S'T O0+HIGT O0+ALIE 00+AI0T O0+HTI'T 00+H000 00+dLlE ALV -
10+950°1- 10+d10°1- 00+HSIL- [0+HE0'I- Q0+HEL'S- O0+HSO'L- O0*HSS'S- [0+HYO'I- [0+HYO'I- 00+HTO'S- O0+HLEG- 00+HOS- 00+ALSS- 00+HOL'S- O0+HTSG- 00+409°6- T0+APO'T- 00+HSS'S- DAV
SIFIRT 1079886 00+AIY'E 20-99S'8 00+ASET 00+96T 00+A6Y'T CO-AS6T €0-AVEl 00+A9S'T O0+ALET O0+ESS'T O0YHOET O00+H00E 00+H9ST 00+H6R'T 00+H000 00+d68CT ALS 2
10+920°1- 00+d26'6- 00+A1€'L- [0+AI10'1- 00+AY9'S- 00+HOE' 00+HG6Y'9- [0+HI0'I- [0+HZO'l- 00+HOS'S- 00+H68'8- O0+IEL'E- 00+Ab0'6- O00+ALG'L- O0YHSE'L- 00+AP6'9- T0+AZO'l- O0+HRE'S- DAY
v0-997T 20°H6S'6 TO-HEL9 €0°SST TOHGE'S TOEPEL COHITS 10-A8LT 10°469°F TOAILS TO-HSIG [0°9S6T TOEESL TOAY6Y CO-AISL 20AL6S 2066 2066 ALS o0zd
00+ATE'E- 00+AETE Q0HAETE- Q0+ATEE- 00+ALTE- O0+ALTE- O0+HETE- 00+H66T- 00+H0ST- 00+ASTE- Q0+AETE- 00+d86T 00+ASTE 00+ATTE- O0+HSTE- O0+APTE 00+ASTE- 00+dSTE- DAV
SIF9ET €0EIST SI-A9ET 90-d8Il S0-AS0T €0-ASE €0-HOO'E 10-AVST 10-900°7T 90-LI'L €0°HTSE €0°H0ST €0°ASTT S1-A9TT SIFA9TT SIFH9TT SI-A9TT 80-ALlt dLS 614
00+H98'€- 00+H98'€- 00+HO8'€- Q0+HIR'E- 00+H98'E- 00+HAISE- Q0+HOS'E- Q0+HIL'E- O0+ALL'E- 00+HOS'€- 00+H9'€- 00+H9S'E- 00+H98'E- O0+AIR'E- O0+AIS'E- 00+HIS'E- 00+AIRE- 00+H98E- DAV
O1-dZSy 10+E8Y'l 9I-AISY 90-HLE'S 10+ArT® SIFHRY'S SOHIGT 00+AVEG 10+AvKl 00+dE6t 90-H6ST SO-AETT 90-d60°€ 00+H000 00+HO0'0 PO-AER’L 00+HO000 SOHIES LS .
00+d00°€ 00+30L'S 00+H00°€ 00+H00°C 10+dS6'S 00+HO0'E 00+HOO'E 00+H09'9 10+AyS'L 00+H06'€ 00+H00°E 00+H00'E 00+H00°E 00+H00°E 00+HOO'E 00+H0D'E 00+00E 00+H00°C DAY
OI-EIT 90-9ZT9 9ISl LOHOSY SO-H9S9 9IHTIE TOHOGT 90HSED pOHOES LOHO6T LO-HSOS €0-H00°€ L0-08'® OISl OIFEEIT pOAEYL 9I-ASIT OIH6Y9 ALS L1
1086 10986 T0-ASG'E 10-986'€ 10-986'€ I0-USG'E 10-AE0Y 10-d86°€ 10-986°€ 10-986°'€ 10-986'€ 109007 10986 10986 10-A86'€ [0°H66E 10986 10-986'€ DAV
91-98L'9 S0-ALI'L 91-ASL9 SO-HLYl 10-HCLE 9IHSL9 IIFHECH SOHEPE COH6T6 00+H000 60-ASI'S SO-HOLT 00+H000 00+H00°0 00+H000 S0-H09T - 00+H000 60-H6O'I aws oL
00+AE0'T- 00+AE0'1- 00+HAEOT- Q0+HEQT- 10-HIL'S- OO+AEOT- Q0+HEO'I- Q0+HE0l- 00+HEQl- 00+HEQl- Q0+HEDl- O0+HEDl- 00+AE0'I- 00+HEDl- O0+HEO'I- O0FHE0'I- 00+EDl- 00+HEQl- DAY
91-dE6'E €0°9SI9 €0-HSSE VO-HE'T TO-HE6Y €0HOOS €0HOLO YOHISH bOHOPP 90-HSI'T €0-HSSL HO-AYO'E vO-dE6Y €0-H6SE €0HLE'S POSAELT MO-HLOT €0°HOG® LS c1d
PO-ALOE €0-H6LT €0H6Y'I YOHSEL TOHYOR €OHSET €OAIIY POH6Y9 €OHGHI POHGOE €OHLLE €0-HSOL YO-HI6E9 €0-HOI €0H6LT bO-AL8Y YO-HRE'E €0°HORY DAV
91-96£'€ 00+AIST 00+AI6T €O-H66'C 00+ALLT 00+H0ST O0+AKOY 00+ISOT 00+AL0°S 00+H0ST 00+ALSE 10-098'9 00+aP8'l 9I-AZSy 107E9T €0°ap0°6 9I-ATSY 00+A89°9 ALS bl
10°486'6 00+A6Y'S 00+H8S'T 00+HOO'I 10+H60'I 00+dIGT 00+H6TL O00+AEET O00+H6L'Y 00+H9S'L 00+ASI'E 00+H9Z1 00+H6S'I 10-HSG'G O0+HOE'l 00+HOO'l 1074866 00+HOY'6 DAV
80-98C'L 10-9CLT POHAILY 90+AIST TO-HIGT 10HPLT 10HOIT SOHECE COHSTT CO-HOST 10-AVST POHAIOL T0-dOK'S 10-E9K1 €0HILY YO+AI6T TO-HSTY LO0+ASIT LS o1
80-H79°T 00+d08'| €0+ATS6 90+HLY'S 00+H66T 10°H998 107869 GOHOS'T 90HIGL SOHPI'L 10HECT pO+AErl TO-HLOG TO-HYS'E €0H6ST YOHAITT 10-HEIL LOHALIT DAV
60-958°C 10°989°1 TOHAIYT SO+ASTS TO-APYE TOHSYT €OHIOS POHSTI 90HITI 90-HLST TO-HSKl 10+A909 €0-Av9T 00+AS®'T LOHOLL 10+AI08 TO-HITY 90+ALTT LS 1
60-A8E'T 10-HLEE 10+H6L'S SO+HRI'G 00+H99'l TOHEI'L COALYT SOHSE® LOHSYL 90HRI'L TOHEET 10+HECT €0-HSRT Q0+AEry LOAIRY 10+de8'y TO-HSY'S 90+A9ST DAV
L0°92Y'L LOPALLT 10+E06E 00+AE0S 00+H00°0 00+H00°0 00+H000 OIHEET SOHEET 00+H00°0 €0-HSOS 10-4S8T Z0-AY9T €O-AV96 €0H68'6 109617 10-AVTT 10+d6L€ LS 1
L0-9LTE 80-H90'S 10+H0ET 10+A89'9 00+H00'0 00+H00'0 00+H00'0 LI-AT6S 90-AZG’L 00+HO0'0 €0-HG8T 10-9989 €0AS8'9 €0HST6 €0HLS9 00+A9ET I0-HETT TOHAETT DAV
SOH6I'S SIFAEST 00+H689 00+d6LT E1-apyl 1€-H0ST SI-ASOT Ol-AvSL €0-99ST TEHIOS 91-ASY9 00+H9ES SI-H0LT 10°906L €0-HOST 00+HO6T C0ATT 00+ASTI ALS ol
S0HTYY SIAESy 10+AIST 10+d8L1 €1-908°1 9l-dvtt 9I-H66L O1-AE6t €0-ASYl 9I-Apby SI-HErL 10+ESHT SI-ApO'E 00+AT6’l €0-HI9OY O0+HLIL TO-IOS 10+EpKl DAV
L0906 TISALOT 10+ESY'E 10+AITT 00+H00°0 00+H00°0 00+H00'0 00+H000 VO-HLIY 00+H00°0 00+H6TS 10+aAP9'E 00+000 10+40€1 [0+HILT 10+AIS'T 00+ASE'6 10+A81T ALS o
L0°990°1 €1-9L9°9 TOHASY'T TO+A9EL 00+HO0°0 00+H000 00+H00'0 00+H000 YO-HOTE 00+H00°0 00+d86l 10+ASTE 00+d000 10+d68'€ [0+HER'S TO+AEST TO+ASY'l 10+AVEL DAV
080T COYAIVE TOMESYL TOFAITT TOHALOY TOHAIOY TOHAZT6 TO-AIOT €0HASET TOHAEYY COHALOL TOVEGST €OYHGO'T TO+API'® €0O+AEOT COYHSIY TOHPTE T0+ATS9 ALS .
POYAOTT- €O+APOT- €OFASY'S- EOHAZSL- €O+ASTT- EOHIESS- EOHAOEG- POHIOTI- €0+A09'8- POHASTI- €0+AGY'O- €OFASE'E- YO+I6I'l- €OFALY'L- EOHISKO- EOYASOS €OFAILS- €0+AISE- DAV
POSSET YOHLYE 00+AOF'9 10-HIIS CO-H989 PO-HISY POHITE POHIPE €OHSET COAPGO HO-AVLL TO-ASST €0-dSSl TO-AIIE O0+HSLT 2086 TO-H6ET 00+H09T ALS I
PO-ISIT O-HSEY 00+HOEE 00+dSOS SO-HE69 YOHISY POHIIE POHSTE €0HO6T CO-HLT6 €0-HI0N TO-H6E'S €0-dS0°L TO-HSL9 O0+H6G'L I10°9TET TO-APKS 00+H0LT DAV
L0°9069 10-9ST9 €0+AS6'E TOHAVEL LO-HCGT 10HEOP 10HSI'E POHSLO YOHOPT SO-HEL'E 10-HEGT O00+AILT T0-HI®'l 60-HLSE SOHIST 10+APK'E €0-HLE9 €0+AL0E LS od
L0926 00+H00'E TOHAL6'6 €0+ALLO 00+HOSL 00+HIST 10°HOEY YOHIOT YO-HOET GO-H66T 10-HOPT 00+AS6'S 0-HE0°T 80-AEYT SOHLLT TO+AER'T TO-HILT pO+ASOL DAV
SOASET 10°FI0L LOFEOY'T 90FEITT L0-A98'T 00+ALY'l 10-ALSY €0-AZEL €0-HO9'T €0-AP9T 10°LOS HOFEO9'L 10°906T TOFAIOT 10+APE'9 POYHLTT 10+EEFS 904667 ALS o
90-AY9'8 10+Ab8'T 90+A89°T 90+H9SY 10+H06T I0+H99T 10+HS9T €0H6KT POHGOL €OHSTT 10+A99°T €0+AZL'S 10+A0LT 10+H00°6 [0+HOR9 YO+ARYT 10+d6L® 90+ISIY DAV
0869 80-APT9 00+HED'6 00+HG6T TIHEI'T 8-HIIG 1I-A9TT O1AL8'6 POHOL'9 ISHSI'L IT-HOPS 00+HLY'6 10+H9ST 00+HSYT 10WHI9T 00+HOG9 00+EPIT 00+HSLS dLS .
09967 80HEI'S I0+HLS'9 I0+HLL'S TI-HEO'T C8-ALYT CI-AIYL OIFALL9 YOEP6L ISHYET ITHISY 10YHLLT 10+HEPE 00+HOIS 10°HSE'6 I0YHLOE I0+HECT 10YHIOY DAV
SOASE'S LOAPED YOTAIST €OHALET E€CASSY Lp1UA9YT pI-ASLY pISAOTT C0-ASOT RHLTI bTASST €OTHSTE OYHEO'T COYALST I0+ALYl EOYHSGY €0+ASH'Y pO+ASST ALS e
SOH6I'Y LOALY'E YOYAGI'T €0+ASE'6 E€C-AGR'E SPITHCOE pI-ACTI SI-AL6Y €0-HST6 SRHEET STASE'6 €OAIEY vOYHTZT CO+APLT 10+AIEY POYEYG'E YOYALOE vO+ASY'E DAV
P0-AP6T SISALSE 10+ES6T 10+HZ9C €1-E9IT p6HETS PTHOLT GOHOVI €OHSYP €S-HROT L-HOGT €0-460°6 SS-AVOY 10-8S'S Q0+HPSP 00+ASSL TO-HSI'E SO+ASTI AL E
09801 8I-AbGE 10+ARIE TO+A6IT €I-9E0T S6-ALY6 PTHEG| GOHET| €0HI6P YSHEI'S pL-HSOT €0-4S0°9 96-dI®6 10-HSOL 00+H00T 10+AIVI TO-HLEG POHISET DAV
LAY STAVEE €0HAICY TOHAGK9 STHEG'G 00+H000 IFHPGT LITHOLE POHOWT SOI-H08'6 SEI-AEOT 00+AGET 06-d61T 60-H68€ SOHEYE 10+AGH'E €O-HITL EOHALTY LS 1
80-9L9L ST-HOO'L €O+AIOE €0+AIL9 vTAVIL PSI-AVY'S THHGE9 SIHIO6 COHIIL COI-H69T 6E1-H0LS 00+ALLT 16-dIlt S0-HOST GOHLOE TOHASST TOHILT pO+AWOL DAV
VSOd! OIHS 0dIN vdd vov SOH od lvsded ov OHH OMD vOs VoM vss 0sd VAVI aa Lyg 2mnsea uopounyg

suonouny

NIBWYOUSq [EPOWN[NW UOISUSWIP-PIXY PUE ‘[epown[nNu ‘[epowiiun 9y} I0j SWYILIOF[e J9YI0 pue Y SHH! Uoamiaq uosuedwo) 11y d[qelL,

119

ranging from 13 to 23. For instance, iIECSA shows remarkable superiority over BAT, SCA,
AO, and FPA in all test cases. Additionally, when compared to HGS, iECSA performs better
in 13 cases, loses in 7 cases, and achieves equivalent results in 3 cases. We can conclude
that iIECSA has a notable performance advantage over its counterparts. This demonstrates
that the iECSA algorithm is able to solve considered problems by finding a better balance
between local exploitation and global search, and as a consequence, it produces satisfactory
outcomes.

To establish a solid statistical foundation for the results attained by iECSA, a thorough
evaluation using a nonparametric Wilcoxon Ranksum test was conducted. This evaluation
aimed to create a meaningful comparison between the suggested algorithm and alternative
counterparts. The resulting p-values are outlined in Table B-2 in Appendix B. Referring to
this table, it is worth highlighting that the majority (90.54%) of the p-values are less than
0.05. A p-value below 0.05 often denotes statistical significance of the findings. In general,
iECSA exhibits superiority in approximately 76.98% of instances, is considered inferior in
about 13.55% of cases, and performs equivalently in roughly 9.46% of cases. Specifically,
among the top-performing algorithms (based on the mean rank), iECSA exhibits superiority

over HHO, CapSA, HGS, GWO, and WOA in 14, 15, 11, 18, and 18 cases, respectively.

4.3.6 Results on Challenging CEC2014 Benchmarks

To further evaluate the effectiveness and applicability of the proposed method, we selected
the challenging IEEE CEC2014 test suite [219], which comprises 30 test functions encom-
passing unimodal, multi-modal, hybrid, and composition scenarios. Detailed descriptions of
these functions can be found in Section Section 4.2.1.2. The experimental setup for this sec-
tion remained consistent with the previous section, with the exception that we increased the
number of evaluations to 70 x 103 for each tested method (the maximum number of iterations
1s 1000 and the size of the population is 70).

Table 4.12 presents the experimental outcomes of the proposed iECSA algorithm and
other comparative methods when handling CEC2014 test functions, in terms of the means

and standard deviations across 30 independent runs. The outcomes also demonstrate iIECSA’s

120

ws ortt 886 wL el LE'S €S 8001 LTyl ST €S°L LLTT 8501 S6'9 L99 06'TT €79 €TST uer uea]y.
- 0/5/5T 0r€/LT 0/s/5¢ 0/Lrec 0/¢1/81 0p1/91 0/L/€e 04192 0/9/%C 078/ 0/2/8¢ 0/1/6C 0/€/LT 0/8/cc 0/1/62 0/c1/81 0/0/0€ LTU/M
€0+HIS Y SO+H96'T v0+H6TT €0+H99'C 00+d00'0 €O+HIL'E €O+HITT €0-d89°1 90+dS0T SO+ALO'T PO+HELT SOHHTS'T +0+der'6 vO+dPCl €O+HCIT v0+d6E T CO+H00L 90+dIST ars
POHAEST SO+APEE $OtH06'C POHHLOT €0+HOT'E €0+dPS'6 +0+H90'T €O+HOT'E 90+HSTT SO+H90'l PO+HLOY SO+HOL'E SO+HOL'T ¥O+HYOT €0+HET’9 PO+AI9T €O+HTI'9 90+d69'1 DAV +170dD-0¢d
€0+HT6'T LOFHIOT 90+dI¥'T €0+dI6'S 00+d00'0 €0+HTST 90+H6L'T €O-HITY LOHHLYS 00+H000 SO+HIST 90+ALE'L 90+HTT'S 90+dbLy SO+ASL'T 90+HEl'y 90+db6'l LO+HB9'E ars
€0+H8L'9 LOFHI0'T 90+HOT'T HO+AIL'T €O+HOI'E €O+HLOS SO+H6EL €0+HOT'E LO+HHSY'S €O+HOT'E SO+H96'T LOHALI'T 90+HTOL 90+HE9T HO+H60'S 90+HIE’E SO+H6EY LOHHSI'S DAV ¥1T0dD-6Td
TO+d8T’9 TO+A8L'6 10+d88'% 10+HE8'L 00+d00°0 00+H000 T10+dSE9 60-HCS'T €0-dAVI'L 00+d00°0 TO+HO0'€ CTO+AYTY TO+AYT'L CO+HO¥'€ CO+H6L'L CTO+I8S'T 10+dCL'y C0+H0S9 awrs
€0+H6L'S €0+HO8Y €0+H08'C €0+HLO'E €0+HO0'E €0+HO00'E €0+HLO'E €0+H00'E €0+H00'E €0+H00'E €0+H68'€ €0+d9T'S €O+HII'S €O+AIOY €0+d9€’9 €0+dLI'y €0+dS9'E €0+H06'S DAV ¥1TDdD-8Td
00+d1¥'y TO+ATOT CO+AP0'T 10+d9S'T 00+d00°0 00+HO0'0 TO+HE09 60-H8CTT TO+ATL'S 00+d00°0 CTO+H6I'T CTO+H86'C TO+ABE'€ CO+HS6'T CO+A89'C CO+AT6'T 10+dbT’S CO+dcy'T awrs
€OHIIT'E €0+d9SE €0+H6SE €0+API'E €0+H06'T €0+H06'T €O+HLI'E €0tHO6'T €O+ILT'E €0+H06'T €O+ABE’E €0+AvL'e €O+HI8E €OtHPY'E €OTHTYE €O+HISE €0+H60'C €O+ASTY OAV $ITOHD-LTd
°0-dI0°L 10tdSTy 10-HCT6 CO-H8L'S 10+dLY'T 10+dL8F T10+HY0'E T10+HO6'€ 10+H09'% 10+dE9y T0+ALL'S T0-HOI'C 10-920'T T10-HCI'T T10+H99v 10-HYOC CO-HYOY 10+H08'S awLs
€0+H0L'T €O+HSL'T €0tHOLT €0+HOLT €O+H6L'T €0+dPL'T €O+HIL'T €O+HTL'T €O0+HIL'T €OTHLL'T €0+dpbL'T €0+H0L'T €0+HOL'T €0+HOL'T €0+HLLT €0+HOL'T €0+H0L'T €0+dEL'T DAV $1TOHD-9TA
00+d61'e 00+dEY'T 00+d¥6'6 00+HITT 00+H00'0 00+H00'0 00+H00'0 O1-HI¥9 ¥0-HL6'S 00+H00'0 00+H89'C 00+d6€'6 10+H00CT 00+H90Y 00+dSy'y 00+HSO'S 00+H89°¢ 10+dPET aLs
€0+HOL'T €0+HOLT €0+HTL'T €O+HILT €0+HOL'T €0+HOLT €0+HOLT €0+HOLT €0+HOL'T €O+HOLT €O+HILT €OHHEL'T €OHHEL'T €O+HILT €O+HTL'T €OHHEL'T €0+dTLT €0+HILT DAV ¥1TOd0-52d
00+d8L’S ¥0-d€0v 10+H09°C 00+dT6'l 00+H00°0 LO-HTO'T SO-H6I'T SO-HOE'S TO-H66'I +0-HO8'€ €0-H69'% 00+dT¥'L O00+HEI'9 00+H09'S 00+dF6'6 00+ASI'9 00+H08°S 10+dI¥T ars
€0+HI9T €0+H09C €0+dL9T €0+H99T €0+H09'T €0+H09'C €0+H09'T €0+H09°T €0+d09°T €0+d09'C €0+d09CT €0+H09'C €0+HI9T €0+dE9T €O+ATIT €O+HLIT €0+dT9T €0+dTLT DAV +170dD¥Td
10-926°'S 10+d69'T 10+dE1'T 00+d80°T 00+H00°0 00+H00°0 00+HSS'T 80-HTS'T TO-HILT 00+d00°0 00+dT6'8 [0+ACL'T 10+d6I'T 00+d8%'S 00+dT8'T [0+HI¥'T SO-HCS'T TO+H0TT aLs
€0+HT9'C €0+H99°C €0+HSOT €0+HTOT €0+HOS'T €0+HOST €0+HTOC €0+HOST €0+H0S'T €0+H0S'T €0+db9'C €0+d69'C €0+HSHT €0+HE9T €0+dT9T €0+dL9T €0+dT9C €0+dLI'E DAV ¥1TOHO-€Td
TOHAIS’T TO+AI0T Co+acre 10+dL9'8 ¥O+AIL'T TOHHLE'T CO+H6Y'T CTO+HO8'CT €0+HOL'T TO+AY8'S CTO+HASST CO+AIOT TO+ASS'T C0+H08'T <C0+H0E'T <CO+H0S'T CO+H0T'T Co+dasT'L awrs
€0+HPO'C €0+HO6'C €0+HE6'C €0+H69'C YO+H99T €O+HT8'T €0+UTST €0+HEl’e €0+d8SYy €O+Hee'e €0+HIOT €O+H8I'E €0+dC0't €0+HLLT €O+HL8T €0+HO0'E €0+HE9T €O+HSS'E DAV $1TOHED-TTA
POHHEL'T 90+HTO'E 90+dPI'C TOHALI'9 LO+H69'Y SOtHOLY SO+HOL'T 90+HLT'S LOTHISY LOHAVIT 90+HTTT 90+HEY'T 90+HTILT SO+HPE'T $0+dP0'L SO+H0T'8 €0+HS8'€ LO+HCTT aLs
YO+ALY'T 90+H90Y 90+HE0'T €0+HS6'S LO+HTO'8 SO+HLO'S SO+HOEY 90+HEE'S LOTHTIOY LOHHLTT SO+AY9'L 90+d9I'T 90+HTO'E SO+H8I'T +0+d8T'6 90+HEL'T +O+APEl LO+APTT DAV ¥1TOdD-1Td
W0HEOTT vOo+dpy'y YO+ASL'T TOHH8Y'T 90+HCE'E €0+dS9Y YOHHITT PO+HCL'E 90+AVO'T SO+HITT €O+HI6L YO+dT9'l $O+HOTY €O+HLTO €0+d86'9 #O+HSY'T 10+H0S°T 90+H0I'T ars
€0+HIET +0+arl’6 v0+apS'S €O+dL6'T 90+dIIE POHHIET PO+HIO'E vO+dCL'S SO+dI6'8 SO+H6I YO+ar0c $O+AdT6'T YOHHIE'9 POHHIPT YO+dPET POTHOL'E €0+ATI'T 90+AYY'I DAV +170d0-02d
00+d80°C 10+dLST 10tH09v 00+d61°C CTO+ALO'T [0+dITE 00+H69°T T0+H61'6 CTO+ASL'T 10+dLE'6 [0+HTL'T 10+d69°T 10+ATI'S [0+A8F'T [0+H69°C [10+d91°€ 00+HdSTT CTO+ALE'L ars
€0+HT6'T €0+H00T €0+dS6’T €O+AT6'T €0+dSET €0HHTO6'T €O+HI6T €0+d01'T €0+d6y'T €O+dSIT €0+dp6’l €0+dI0T €0+dL6'T €0+HC6’T €O+HE6'T €O+HS6'T €0+AT6ET €0+AaveT DAV +170dD-614
10+dE6'T LOHHI6'E LOHHILY TO+A90'E 60+dSS'T +O+HCI'T SOHHIT'E 80+HS8'E 60+H6L'T 80+HI8Y LO+ATS'T 80+dPL'T SO+HS6y €O+H88'8 €O+HIST LOHALY'9 €0+H88'T 60+d6T'T awrs
€0+AP0'T LOFHAP'S 90+dE6'8 €0+AT8T 60+AYT9 ¥O+HOTT PO+HO09'L 8O+HLS'T 60+HIYY 80+HE6'T LOFHOO'T 8O+HLY'T SO+H96'1 PO+ASET €O+HEC’E LO+HIL'S €0+dE9'S 60+H0S'T DAV ¥1TOdD-81d
PO+ATS’S 90+d60°8 90+HI8'T €O+dSTy LO+AO0'L 90+HLY'T SO+H6I9 LOTHLET LOTHET'6 LOYH66'C 90THLET 90+HOSY 90+HET'S €SO+H69'€ SO+HO8'T 90+d86'C SO+ASIY LOHHSL'Y awrs
P0+dS9'9 90+d81'8 90+H69'C PO+ATI'T 80+AI8'T 90+H8I'T SO+HSY9 LO+HIE'T 8O+HEY'T LO+H68'E 90+HLY'T LO+HS0'T 90+HTO'L SO+HTE'9 SO+I6T'E 90+dPe'L S0+H96'6 LO+H09'9 DAV ¥1TOdD-LIA
10-9€Ty 10-9L¥'y 10-968°S 10-d¥8°1T 10-HIT'C 10-dvE’€ T10-HILS T10HI6'E T10-HyP'T 10-H0S¥ T10-HYI'L T10-HPL'T 10-dSS'y 10-H90'S 10-HCS'S 10-HSS'T 10-HC8T 10-HEY'S aLs
€O+HI9T €OHHIOT €0+HIOT €O+HIOT €0+dI9T €O+HIOT €O+HIOT €0+dI9T €0+dI9T €O+AI9T €0+HTI9T €O+HIOT €0+HIOT €0+dI9T €O+HIOT €0+dI9T €O+dI9T €0+dIvl DAV ¥1TOd0-914
00+d00°¢ €0+dSET PO+ATH9 10+dSTT SO+A89'T 10+dS9'€ 00+HC8'l FO+HOI'T PO+ALT'9 +O+HIIT [0+HEI'9 €0+d9LL 10+HSE'S 00+HE6'Y 00+dbe'e [0+ASI'S 00+dTH' T SO+A9TE ars
€OHHISTT €OHHI6T +O+HESE €O+A8S'T SO+A8LYy €OHHEST €O+HIST +O+HEl’l SO+H96'l ¥O+A89'T €0+dSS'T PO+ATO'T €O+HIOT €O+HISTT €O+AISTT €O+HEY' T €0+dTST SO+AI8'E DAV +1T0dD-61d
0-der'y 10+d0v' T 10+dS9°'T T0-H80F [0+HLO'E€ 10-H9L'9 10-H8S'T 10+dE8'C [0+d9T°€ [0+HEP'T 00+d86'C 10+d0I'T 10-HO8'T 10-dI6'T 10-d¥0'T 00+db8'€ CO-HLF'8 10+dEL'y aLs
€O+AOY'T €O+HCY'T €0+ATH' T €0+dOP'T €0+HLYT €0+dOV'T €O+dOP'T €0+do¥'T €0+dap9'lT €0+deS'T €0+dOv'T €0+dov T €0+dOy'T €0+d0b' T €0+d0P'T €0+dTy' T €0+d0¥'T €0+dT9'l DAV v1TOdOVId
°0-96T°L 10-499°6 00+dSO'T CO-HOO'S T0-HLI'S 10-dI¥'T TO-H69'9 O00+dAST'T 10-9C8'6 10-HIL'S TO-HOL'S 10-dve’e 10-dOT'T T0-H8I'T T10-H8I'T T10-HO9'€ TO-HOT'9 T10-HOE'S awrs
€0+H0E'T €0+HOE'T €0+HOET €0+HOE'T €OHHIET €0+HOE'T €O+HOET €0+HOE’T €OHIIET €OHHIET €0+d0E’T €0+d0E'T €0+HOE'T €0+HOE'T €0+HOE'T €0+d0ET €0+H0ET €0+dIE’T DAV ¥1TOdD-€1d
10-9¥8'1 10-9S€'C 10-90¥'T 10-H08'T 10-9LL'9 T0-HET'T CTOHST'8 10-H8Y'€ 10-H9¥'¥ T0-HELY 00+H90'T 10-H9E'€ 109109 T10-HIS'T 10-d9TT 10-H4S6'C 10-HO00v 10-H8E'6 awrs
€0+90TT €0+d0TT €0+H0TT €0+HOTT €0+HOTT €0+d0T'T €0+HOTT €0+H0T'T €0+d0T'T €0+d0T'T €0+d0T'T €0+d0T'T €0+d0T'T €0+HOCTT €0+HOT’T €0+d0T'T €0+d0T'T €0+d0T'T DAV $1TOED-TIA
T0+ASY’E TOHH66'9 COHAEI'8 CO+H0TT TO+AY9'y TO+HO9'S TO+HOSY CO+HSY8 TO+H09'y TO+AII'S CTO+HCI'8 CO+H8Y'T TO+H9E'S C0+dP0'8 CO+HI0'8 CTO+H6S'E COHASL'E €OHAIT'T awrs
€OHATIY €0+HCT'9 €0+HSTS €0+ATT'S v0+dCO'T €0+H88'¢ €0+HOSE €0+HC6'9 €0+HS6'8 €O+HSL'9 €O+dIYy €0+HOP'8 €0+d0Y'9 €0+d80°S €0+HO8'y €0+HCE'S €0+dbC8 €0+HTS9 DAV $ITOHD-TT4
TOHIITS TO+dST9 CO+HE0'8 TOHAEY'l CTO+H8L'E CTO+HIOE TO+HE9'C €O+HVO'T CTO+AYS'E TO+HEE’9 TOHACT'6 CO+HESy CO+HER'9 CO+HV0'8 TO+H06'S CO+APOY TOHASE'E CO+HOL'8 ars
€0+H88°c €0HAPY'S €0+dSSy €0+A8IY €0+dL6'6 €O+HINT €O+HLTT €0+H6L'S €0+d6S'8 €0+HS9'S €0+H09°€ €0+Avy'L €OHHITS €0+dC9y €0+dI6'e €O+HCE’L €0+dSS'S €0+d81'9 DAV +1T0d0-014
[0+ESET 10+dLST 10+db6’'e [0+AT6'T 10+d981 10+d88°C 10+dP8’T 10+d68C [0+dS0°€ 10+HT9T [0+H96'C 10+dTy'T 10+dIL9 10+dP9°€ [0+HETT 10+d9S°T [0+ATT'T 10+d86'¢ ars
€OHHI0T €OHHITT €0+dLO'T €O+H6I'T €Oo+dIET €0+dSOT €O+HI0OT €0+dLIT €0+d8TT €O+ATI'T €0+HO00'T €O+H6I'T €0+dST' T €0+d90°'T €0+ATO'T €0+d81°1 €O+dOI'T €0+d8I'l DAV #1TDHD-6d
10+991°T 10+d8¢°C 10+d¥9'C 10+d08'T [0+HITT 10+dE0°C 10+d6Y'1 10+HE8'T 10+dTI'C 10+dI1'C 10+dvI'C 10+d88°1 10+HL9'C T0+HI8T T10+H9L'T T10+dS8S'T 10+d80°'T T0+HLL'T aLs
0+dE0’6 TO+dS6'6 COtALI'6 TOHHS8'6 €O+AST'T TO+ATY'8 <TO+H89'8 €O+HO0'T €O+AvI'T TO+AS8'6 TO+H06'8 €0+d90°'T TO+HT8'6 CTO+HLY'6 TOHATI'6 €0+dSO'T TO+ATS'6 €0+dS0'T DAV $1TOED-8d
€0-9ES'S 10+d88F T0+ASSy 00+dE8T 10+dS0'S 00+dLy’S 00+HSL'T 10+Avyy CO+dpb0'T 10+d6S'L TO0+ATTT 10+d9¢’€ 00+HET'T €0-HE9'6 00+H96'T 00+H0S9 SO-H6T'S TO+AIY'T awrs
TO+A00’L TO+A69'L TOHHIL'L TO+HOT'L €O+dSP'T TO+ASO'L TOHHEO'L TO+HTY'8 €0+d9¢’l TO+d66'6 TOTHCI’L TO+HS8'8 TO+HE0'L TO+HO0'L COTHIOL TO+ATEL TO+HO0'L €O+ASE'T DAV $ITOED-LA
00+d18'T 00+HOP'C 00+dS6'C 00+dST'T 00+dE€9'T 00+H9ST 00+dPS'T 00+HLO'E 00+d¥P'T 00+d9€'T 00+HS6'T 00+HALY'T 00+dES’€ 00+d9%'S 00+d8T'H 00+dES'T 00+dSSy 00+dLT'T awrs
TOHALT9 TO+AET'9 TO+ATT'9 TOHAIE'9 TO+ASK'9 TO+H6I'9 TO+H80°9 CTO+HSE9 TO+HEY'9 TO+HOP'9 CTO+ASI9 CTO+ALE9 TO+H9E'9 CO+H61'9 CO+A81'9 CO+ALE'9 TO+HEE'9 CTO+ASH9 DAV ¥1T0dD-94
$0-9¢9°S 10-dI¥'T 10-HOE'T TO-HOI'S CO-HSS'L TO-H90'L T0-HOE'T T10-dPP'T TO-HSI'L T0-HEL'T T10-H66'C CTO-HLL'E T0-HC86 10-dSI'T TO-HCS'6 CTO-HO9'S <TO-HIY'8 10-H89'1 aLs
TH+AOT'S COHHIT'S TOHHOT'S CTOHHITS TOHHITS TO+HOT'S CO+HOT'S TOHAITS TOHHITS CO+HOT'S COHHITS COHHIT'S TOHHITS TO+HOT'S CO+AITS TOHHITS CO+AITS TO+H0T'S DAV $1TOHD-Sd
10+d6y'e TO+aSI’e TO+d0E9 [0+HSL'T €0+d8ST 10+dby'S 10+HCET CTOHHIE6 €O+ALIY €OHHSH'T [0+APCL TOHHOI'E 10+dPE’L 10+H00v [0+HEP'T TO+H9ST 00+HTIT'8 €0+dLO'E ars
wW0+are'y C0+de8'8 €0+d8I'l TOHHOE'9 PO+ASET TO+H99'S TOHHOE'S €O+H6L'T FO+HEL'T €0+H9T'S TOHHEE'9 €0+dEL'] TO+HPO'L TO+HTE'S TO+HT6'y €0+H60'1 TO+AP8® +0+d00'1 DAV #1TOHD-1d
€0+H90'T €0+HOE’L +O+A8LY €O+AILT 90+dP0'6 €OHHISY €O+HS6'T +O+HETT €0+dSSS €0+d0E'9 €0+dEL’'L €O+HAES'8 +O+H6T'S +O+d6Y' T €O+ATTT O+ALI'C 00+dOI'T ¥O+HL8'6 awrs
€0+dE8'E YO+HOE’L VO+AIS’L vO+H6ST 90+dSY'y ¥O+d9T'T +vO+dSO'T +0+d6V'9 ¥0+d89'8 #0+H60'L PO+H6I'E PO+A9T'S YO+HCS'L +O+H00Y €0+d08'T SO+ALI'T TO+HAPO'E SO+A8T'T DAV $1TOED-€d
€0+d80°€ 60+d9TY 60+H60°L 80+HTOT 60+HE6'S 80+dLL'8 80+HAVS'T 60+HLE'6 60+HIT6 60+H68'L 80+H6V'S 60+d86'C LO+HE9'8 €O+HI6'6 €0+HO6'S 60+ALI'T TO+A89'T OI+d6T'T awrs
€0+dL0Y 60+H6IL OI+dP0'T 80+HCS'8 OI+HAS8L 80+dLE'L 80+HEST OI+dPOT 01+d80'8 OI+dLEY 60+dE0'T 0I1+H0T'T 80+H06'C €0+AI6'6 €0+AV6’L OI+dI0T TO+HA9Y'L O1+dTT9 DAV $1TOED-TA
90+d86'1 80+HOT'T LO+H0S'9 90+dST'T 80+AYSC LOTHOI'T 90+H00'8 80+HIS'T 80+HO6'E 80+H90T LOTHICY 8O+HALTT LOTHOS'E 90+H6E6 SO+H6Y'L LO+AP9'E LO+AS6'T 80+H8E9 awrs
90+H00°S 80+HP8’T L0+H99'S 90+dF9'9 60+dSL'T LO+HTLT LO+HI9'T 80+HS6'CT 60+HSH'T 80+HSO'S LO+HS6'S 80+HIT'E LO+HP9'S LOHATH'T 90+HOS'T 80+API'T LO+HIS'8 60+HSI'T DAV #1T0dD-14
Vsod! OIHS OdIN Vdd VoV SOH od 1vsded ov OHH OMD VvOs yom VSss 0osd VAVI da Lvd Qnseajy uonoun{

suonouny £10zJdD 9] U0 swyog[e 19Y)o pue ySHH! Usam)aq uostedwo)) (1 p dqel

121

superiority, inferiority, and equivalence to each of the test algorithms. Notably, the compari-
son reveals a number of patterns. It is clear that iIECSA outperforms BAT in all test cases. Ad-
ditionally, the constantly high superiority counts against algorithms like Jaya, WOA, SCA,
SSA, AO, MFO, FPA, and SHIO highlight iECSA’s ability to outperform its competitors
across various problem scenarios. However, the findings also exhibit that iECSA may have
certain limitations when dealing with specific types of functions. Comparing iECSA’s per-
formance to DE, EO, and HGS reveals a more balanced mix of superior and inferior results.
This implies that while iECSA performs well in many cases, it might not be the best option
for every optimization problem.

The Friedman test’s mean rank gives a valuable overview of overall performance. Better
performance is indicated by a lower mean rank, and iECSA’s score of 5.02 indicates that it
is competent across all test functions. It is important to note that in the case of composite
functions, HHO, HGS, and AOA methods with mean ranks of 11.25, 5.23, and 13.26 respec-
tively, exhibit a clear advantage over the examined methods. The p-values of the Wilcoxon
rank-sum test are detailed in Table B-3 (Appendix B) to confirm the existence of signifi-
cant differences. It is evident that 386 of the 510 examined samples—representing 92.75%
of the whole dataset—yield values below 0.05. In these instances, iECSA outperforms its
counterparts in 386 occurrences, comprising 75.69% of the whole dataset. When iECSA is
compared to the controlled methods (the methods with the top ranks), iECSA outperforms
HGS statistically in 16 scenarios, displays inferiority in 11 cases, and exhibits equivalency
in 3 cases. In comparison with EO, iECSA surpasses it in 14 instances, displays inferiority
in 12 instances, and maintains equivalence in 4 instances. This thorough analysis confirms
that iIECSA has statistical benefits over the other competitive methods.

To provide a comprehensive overview, we present the Friedman mean rank of the com-
parison methods for both sets of test functions in Table 4.13 and illustrate the results in Figure
4.11. These findings further reinforce the consistent and reliable behavior of iECSA when
compared to other approaches across both sets of functions. This implies that iIECSA exhibits
a dependable and assured performance, making it a promising choice for various optimiza-

tion problems. Additionally, Table 4.14 summarizes the comparisons based on Wilcoxon test

122

Table 4.13: Average rankings of the algorithms calculated using Friedman’s test

Algorithm Mean Rank on F1-F23 Mean Rank on CEC2014 Mean Rank on all functions Rank

iECSA 4.891 5.017 4.962 1

HGS 7.043 5.367 6.094 2
EO 8.565 5.233 6.679 3

DE 9.000 6.433 7.547 4
GWO 7.761 7.533 7.632 5

PSO 9.370 6.667 7.840 6
SSA 9.978 6.950 8.264 7

CapSAl 6.891 10.083 8.698 8

HHO 6.087 11.250 9.009 9
FPA 11.826 7.217 9.217 10
WOA 7.978 10.583 9.453 11
SHIO 9.326 11.100 10.330 12
MFO 13.391 9.883 11.406 13
AO 8.435 14.167 11.679 14
AOA 9.957 13.617 12.028 15
JAYA 12.565 11.900 12.189 16
SCA 13.065 12.767 12.896 17
BAT 14.870 15.233 15.075 18

results for superior, inferior, and equal outcomes. These findings validate the effectiveness
of iIECSA in tackling a wide range of optimization problems, showcasing its competitiveness
and reliability. However, it is worth noting that further investigations and improvements can
be pursued to enhance its performance and adaptability in addressing more complex and di-
verse real-world problems. The findings from this study contribute to the growing body of
knowledge in the field of optimization algorithms and provide valuable insights for future
research in this area.

Table 4.14: Comparison of iECSA Performance: Wilcoxon Test Results for Superior,
Inferior, and Equal Outcomes

23 standard functions 30 CEC2014 functions All functions
Algorithm Superior(+) Inferior(-) Equal(=) | Algorithm Superior(+) Inferior(-) Equal(=) | Algorithm Superior(+) Inferior(-) Equal(=)
BAT 23 0 0 BAT 29 0 1 BAT 52 0 1
DE 13 0 10 DE 13 9 8 DE 26 9 18
JAYA 22 0 1 JAYA 29 1 0 JAYA 51 1 1
PSO 18 0 5 PSO 17 7 6 PSO 35 7 11
SSA 16 0 7 SSA 22 2 6 SSA 38 2 13
WOA 18 4 1 WOA 25 1 4 WOA 43 5 5
SCA 23 0 0 SCA 28 2 0 SCA 51 2 0
GWO 18 5 0 GWO 22 6 2 GWO 40 11 2
HHO 14 8 1 HHO 24 6 0 HHO 38 14 1
AO 23 0 0 AO 26 4 0 AO 49 4 0
CapSA 15 7 1 CapSA 23 7 0 CapSA 38 14 1
EO 14 7 2 EO 14 12 4 EO 28 19 6
HGS 11 7 5 HGS 16 11 3 HGS 27 18 8
AOA 15 8 0 AOA 23 7 0 AOA 38 15 0
FPA 23 0 0 FPA 23 4 3 FPA 46 4 3
MFO 19 0 4 MFO 27 3 0 MFO 46 3 4
SHIO 16 7 0 SHIO 25 5 0 SHIO 41 12 0
Sum 301 53 37 Sum 386 87 37 Sum 687 140 74
% 76.98% 13.55% 9.46% % 75.69% 17.06% 725% % 76.25% 15.54% 8.21%

123

H standard functions suit ® CEC2014 suit all
16.000
14.000
12.000
10.000

8.000

MEAN RANK

6.000
4.000

2.000

0.000

PO O OO0 O TS
X o L9 PN I AR N IR SR MRS IS S
& 3 N o SO R

Figure 4.11: Schematic view of the results of Friedman rank test (standard and CECE2014
suites) based on results in Tables 4.11 and 4.12

The convergence curves and population diversity curves of comparison methods for cho-
sen test functions are shown side by side in Figures 4.12 and 4.13. This makes it possible to
comprehend how population diversity influences the optimization process. It is clear from
a comparison of the population diversity with the convergence curves that the iECSA suc-
cessfully maintained a high population diversity until the promising area was satisfied. This
trend was repeated for the majority of the functions, demonstrating the algorithm’s efficacy
in preserving population diversity. On the other side, the population diversity of other al-
gorithms like SSA and WOA decreased while the convergence curve was too slow over the

course of iterations. As a result, these algorithms became stuck early in a local optima.

124

108 —— iECSA
——— HGS
108 — GWO
—— HHO
" —— CapSA
10 — WOA
.
¢ 1024
=]
i
100
1072
107%
0 100 200 300 400 500
Iterations
(a) F5-convergence behaviour
102 — IECSA
0 —— HeGs
— GWO
107 —— HHO
—— CapSA
107% — WOA
@
2
£ 107
1010
107
0 160 260 360 460 560
Iterations
(¢) F9-convergence behaviour
. —— iECSA
10 —— HGS
— GWO
10° —— HHO
—— CapSA
102 4 — WOA
.
g
2107t
107
1077 “_\“\L
6 160 260 360 460 560
Iterations
(e) F12-convergence behaviour
1014 —— iECSA
~——— HGS
— GWO
—— HHO
—— CapSA
, 1021 — woA
g
g
- h
1073 4
6 160 260 360 460 560
Iterations

(g) F15-convergence behaviour

Figure 4.12: The convergence and diversity plots of top algorithms on some standard

benchmarks

,
10 —— iECSA
T T T ——— HGS
10? — Gwo
—— HHO
107! —— CapSA
N —— WOA
2 105
g 10
g
g
8 107°
10713
107
b 160 260 360 4&0 560
Iterations
(b) F5-diversity behaviour
—— iECSA
10! ~—— HGS
. — Gwo
10 —— HHO
10-11 —— CapSA
N — WOA
2100
210
2 102
a3 10
10729
1073
1074
b 160 260 360 460 560
Iterations
(d) F9-diversity behaviour
107 —— iECSA
——— HGS
10¢ I 1 1 ewo
—— HHO
10! —— CapSA
> —— WOA
£ 1072
@
g
3 10
1078
10711
6 160 260 360 460 560
Iterations
(f) F12-diversity behaviour
—— |ECSA
—— HGS
102 4 — GWO
—— HHO
—— CapSA
S 10°4 — WOA
S 102
107*

200 300 400
Iterations

0 100

(h) F15-diversity behaviour

125

—— IECSA
~—— HGS
— GWO
—— DE
—— PSO
—— SSA

400 600 800
Iterations

200

1000

—— iECSA
108 —— HGS
— Gwo
— DE
"
10 —— PSO
—— ssA
2 1074
B
]
2
S 10
102
107
0 200 400 600 800 1000
Iterations

(a) FICEC2014-convergence behaviour (b) FICEC2014-diversity behaviour

15x10° — iECSA
—— HGs
— Gwo
3
1.4x10 oF
— PsO
13x10° — ssA
@
£
£ 12x10°
11x10°
10°

400 600 800

Iterations

200

1000

(c) FOCEC2014-convergence behaviour (d) FOCEC2014-diversity behaviour

—— ECSA
~—— HGS
108 — GWO
—— DE
—— PSO
—— SSA
@ 107
108
10°
b 260 460 660 860 10b0
Iterations
(e) F17CEC2014-convergence
behaviour
10° —— {ECSA
—— HGS
-
—— PSO
107 —— SSA
g 10°
10°
104
0 200 400 600 800 1000
Iterations
(g) F29CEC2014-convergence
behaviour

Figure 4.13: The convergence and diversity plots of top algorithms on some CEC2014

benchmarks

107 — iECSA
~—— HGS
10° 4 — GWO
—— DE
10% 4 —— PSO
— sSA
2
g
=
o 101
1073
1075
0 200 400 600 800 1000
Iterations
—— IECSA
108 T —— HGS
— Gwo
—— DE
-
10 —— psO
- —— SSA
2z 1074
5 10°
g
2
& 100
10~
1074
0 200 400 600 800 1000
Iterations

(f) F17CEC2014-diversity behaviour

—— ECSA
10° —— HGS
— GwWo
— DE
4]
10 —— PsO
— SSA
2 1074
@
@
2z
8 10°4
1072
107
0 200 400 600 800 1000
Iterations

(h) F29CEC2014-diversity behaviour

126

4.4 Experimental Results of CapSA

This section presents an empirical evaluation of the suggested enhancements to the CapSA.
The experiments evaluate the effectiveness of new operators and their incorporation into the
cooperative island model, using the same parameter settings presented in Table 4.1. The fol-
lowing subsections offer in-depth findings from these experiments. Initially, the effectiveness
of traditional CapSA and its enhanced versions are compared across a variety of real-valued
benchmark functions. Next, the investigation focuses on the influence of the adaptive island-
based model on both CapSA’s original and improved versions. Lastly, a thorough compar-
ison with other modern algorithms emphasizes the relative performance and advancements
resulting from the implemented modifications. Each analysis step underscores the incremen-
tal improvements made and places the significance of this research within the wider context

of optimization algorithm evolution.

4.4.1 Comparison of Traditional and Enhanced CapSA Variants

This subsection presents a comprehensive analysis aimed at examining the impact of the
suggested search strategies on the primary CapSA. Hence, a thorough examination of the
three established versions of CapSA (MCapSA1, MCapSA2, and MCapSA3) is conducted to
determine the superior version based on solution quality, convergence patterns, and diversity
curves. Table 4.15 provides a summary of the CapSA variants being examined. In the table,

Y’ indicates that the strategy is included, while N’ indicates that the strategy is not included.

Table 4.15: Summary of enhanced variants of CapSA and their implications

Variant Refined Enhanced Adaptive Dual Implications
Follower Local Best Update
Update Perturbation Strategy
CapSA N N N Baseline algorithm performance.
MCapSAl Y N N Improved exploration and convergence speed.
MCapSA2 N Y N Enhanced exploitation and overcoming of local
optima.
MCapSA3 Y Y Y Better balance of exploration and exploitation,
(ECapSA) adaptively managed.

The results of the CapSA and its suggested variations, when tested on 30-dimensional

standard problems, are comprehensively presented in Table 4.16. The results showed that

127

MCapSA2 demonstrated the most promising outcomes, outperforming the baseline CapSA
in 18 out of 23 cases, or approximately 78.3% of the test instances. MCapSA1 and MCapSA3
also proved to be strong contenders, surpassing the standard CapSA in 13 and 16 cases, re-
spectively. The findings also demonstrated that the average solution quality consistently
improved in the upgraded versions. Specifically, MCapSA2 and MCapSA3 had lower stan-
dard deviations, suggesting a more reliable and robust search capability. The overall mean
rank metrics indicate a highly competitive optimization performance, with MCapSA?2 and
MCapSA3 sharing the top position with a mean rank of 2.33. They are followed by MCapSA1
with a mean rank of 2.63, and finally the basic CapSA with a mean rank of 2.72. These find-
ings indicate that the proposed search strategies and algorithmic enhancements have con-

tributed to the optimization efficiency of the standard CapSA.

Table 4.16: Comparative performance of CapSA and enhanced MCapSA variants on
30-dimensional standard test functions.

Functions CapSA MCapSAl MCapSA2 MCapSA3
AVG STD AVG STD AVG STD AVG STD

F1 1.22E-17 3.44E-17 8.56E-19 2.54E-18 2.14E-18 5.54E-18 2.76E-18 8.63E-18
F2 3.76E-10 8.78E-10 4.47E-10 7.20E-10 8.54E-10 1.19E-09 7.66E-10 1.15E-09
F3 1.88E-16 9.54E-16 2.22E-16 5.66E-16 2.49E-15 1.09E-14 7.70E-16 2.36E-15
F4 1.18E-10 2.02E-10 1.45E-10 2.58E-10 8.32E-11 1.38E-10 1.47E-10 3.37E-10
F5 2.12E-03 2.52E-03 2.65E-03 5.51E-03 6.66E-04 1.22E-03 5.97E-04 1.54E-03
F6 1.91E-04 3.84E-04 229E-05 4.19E-05 3.59E-06 5.58E-06 8.70E-06 1.29E-05
F7 1.53E-04 1.24E-04 1.76E-04 2.00E-04 1.39E-04 1.52E-04 1.57E-04 1.13E-04
F8 -1.26E+04 1.68E-03 -1.26E+04 8.42E-04 -1.26E+04 3.48E-04 -1.26E+04 8.00E-04
F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F10 1.21E-10 2.62E-10 2.24E-10 3.68E-10 4.33E-10 6.10E-10 2.00E-10 3.48E-10
F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 1.03E-05 1.37E-05 7.24E-07 1.09E-06 3.14E-07 5.68E-07 4.43E-07 5.18E-07
F13 9.24E-06 1.24E-05 1.43E-05 4.62E-05 4.40E-06 5.84E-06 2.13E-06 3.68E-06
F14 1.16E+00 9.00E-01 9.98E-01 3.67E-11 9.98E-01 4.60E-12 9.98E-01 9.35E-12
F15 5.90E-04 3.30E-04 597E-04 4.24E-04 3.50E-04 1.66E-04 3.22E-04 2.74E-05
F16 -1.03E+00 2.87E-09 -1.03E+00 7.52E-15 -1.03E+00 1.99E-15 -1.03E+00 6.78E-16
F17 398E-01 7.26E-08 3.98E-01 7.13E-13 398E-01 1.92E-12 3.98E-01 242E-12
F18 3.00E+00 6.74E-09 3.00E+00 1.70E-13 3.00E+00 8.08E-13 3.00E+00 5.91E-14
F19 -3.81E+00 1.45E-01 -3.86E+00 5.38E-08 -3.86E+00 2.43E-08 -3.86E+00 1.15E-08
F20 -3.14E+00 1.29E-01 -3.29E+00 5.89E-02 -3.26E+00 7.51E-02 -3.28E+00 6.28E-02
F21 -1.02E+01 5.76E-03 -1.02E+01 1.39E-03 -1.02E+01 1.85E-04 -1.02E+01 8.17E-05
F22 -1.04E+01 3.92E-03 -1.04E+01 4.26E-03 -1.04E+01 4.61E-05 -1.04E+01 1.17E-04
F23 -1.05E+01 8.22E-03 -1.05E+01 8.13E-04 -1.05E+01 8.44E-05 -1.05E+01 1.29E-04
WITIL 312118 312118 812113 712114

Mean Rank 2.72 2.63 2.33 2.33

The improvements introduced to the CapSA algorithm are thoroughly assessed using the
challenging IEEE CEC2014 set of real-valued functions. The results presented in Table 4.17
indicate that the enhanced versions of CapSA (MCapSA1, MCapSA2, and MCapSA3) show

significant improvements compared to the standard CapSA in the majority of test cases.

128

Table 4.17: Performance comparison of standard CapSA and enhanced variants on IEEE
CEC2014 30-dimensional test functions

CapSA MCapSAl MCapSA2 MCapSA3
AVG STD AVG STD AVG STD AVG STD

F1-CEC2014 2.258E+08 1.04E+08 1.027E+08 4.78E+07 6.755E+07 3.76E+07 6.553E+07 3.28E+07
F2-CEC2014 2.096E+10 8.99E+09 4.436E+09 3.66E+09 2.226E+09 1.46E+09 2.175E+09 1.10E+09
F3-CEC2014 6.724E+04 1.10E+04 4.529E+04 1.14E+04 3.025E+04 7.98E+03 3.050E+04 1.06E+04
F4-CEC2014 2.972E+03 1.37E+03 9.302E+02 2.45E+02 7.972E+02 1.87E+02 7.387E+02 1.28E+02
F5-CEC2014 5.207E+02 1.42E-01 5.207E+02 1.80E-01 5.205SE+02 1.66E-01 5.205E+02 1.80E-01
F6-CEC2014 6.348E+02 1.98E+00 6.315E+02 3.57E+00 6.273E+02 3.19E+00 6.273E+02 3.18E+00
F7-CEC2014 8.580E+02 4.88E+01 7.582E+02 2.24E+01 7.314E+02 1.26E+01 7.320E+02 1.53E+01
F8-CEC2014 1.025E+03 2.86E+01 9.638E+02 2.83E+01 9.423E+02 2.79E+01 9.231E+02 2.34E+01
F9-CEC2014 1.174E+03 3.01E+01 1.105E+03 3.62E+01 1.077E+03 2.93E+01 1.066E+03 3.20E+01
F10-CEC2014 5.789E+03 1.03E+03 5.333E+03 1.04E+03 4.600E+03 9.42E+02 5.080E+03 8.00E+02
F11-CEC2014 7.058E+03 6.52E+02 6.323E+03 8.02E+02 5.881E+03 7.47E+02 6.232E+03 9.55E+02
F12-CEC2014 1.202E+03 6.02E-01 1.201E+03 4.51E-01 1.201E+03 3.52E-01 1.201E+03 4.00E-01
F13-CEC2014 1.304E+03 8.15E-01 1.301E+03 8.39E-01 1.301E+03 1.13E-01 1.301E+03 1.28E-01l
F14-CEC2014 1.466E+03 2.53E+01 1.412E+03 1.33E+01 1.405E+03 6.09E+00 1.404E+03 5.33E+00
F15-CEC2014 9.224E+03 9.82E+03 2.440E+03 6.77E+02 1.820E+03 2.25E+02 1.809E+03 2.20E+02
F16-CEC2014 1.613E+03 4.01E-01 1.612E+03 6.10E-01 1.612E+03 5.21E-01 1.612E+03 4.69E-01
F17-CEC2014 2.087E+07 1.74E+07 1.373E+07 3.09E+07 2.900E+06 2.50E+06 3.062E+06 3.38E+06
F18-CEC2014 1.367E+08 3.17E+08 7.662E+07 3.02E+08 1.329E+05 3.29E+05 1.038E+05 2.11E+05
F19-CEC2014 2.054E+03 5.92E+01 1.978E+03 4.25E+01 1.955E+03 4.23E+01 1.963E+03 4.02E+01
F20-CEC2014 6.465E+04 6.28E+04 2.370E+04 1.42E+04 1.532E+04 1.14E+04 1.037E+04 6.14E+03
F21-CEC2014 7.614E+06 9.57E+06 1.561E+06 1.26E+06 9.761E+05 7.32E+05 7.319E+05 6.16E+05
F22-CEC2014 3.171E+03 3.20E+02 2.866E+03 2.33E+02 2.654E+03 1.49E+02 2.636E+03 1.80E+02
F23-CEC2014 2.500E+03 1.44E-08 2.500E+03 1.72E-08 2.500E+03 1.24E-08 2.500E+03 5.84E-09
F24-CEC2014 2.600E+03 2.28E-05 2.600E+03 3.54E-05 2.600E+03 1.94E-05 2.600E+03 3.58E-05
F25-CEC2014 2.700E+03 1.26E-10 2.700E+03 4.05E-10 2.700E+03 2.67E-10 2.700E+03 5.53E-10
F26-CEC2014 2.739E+03 4.71E+01 2.708E+03 2.53E+01 2.704E+03 1.82E+01 2.700E+03 1.10E-01
F27-CEC2014 2.900E+03 2.37E-09 2.900E+03 1.44E-09 2.900E+03 5.75E-09 2.900E+03 1.63E-09
F28-CEC2014 3.000E+03 4.80E-09 3.000E+03 1.17E-08 3.000E+03 8.74E-09 3.000E+03 5.80E-09
F29-CEC2014 3.100E+03 2.59E-02 3.100E+03 1.25E-02 3.100E+03 3.32E-02 3.100E+03 2.19E-02
F30-CEC2014 3.200E+03 3.22E-03 3.200E+03 1.22E-03 3.200E+03 2.72E-03 3.200E+03 3.19E-03

Mean Rank 3.63 2.80 1.88 1.68

Functions

Specifically, MCapSA1 and MCapSA3 perform better than standard CapSA in 83.3% of
the test cases, while MCapSA2 shows superior results in 80% of the cases. In addition,
the performance on the composite functions (F23-F30) is quite impressive, as all versions
demonstrate high-quality solutions close to the optimal. This implies that each version can
handle complex optimization problems and produce results close to the most efficient solu-
tion. The average rank for each algorithm further supports these findings, with MCapSA3
ranked first with a mean rank of 1.68, MCapSA2 coming in second with a mean rank of
1.88, MCapSA1 coming in third with a mean rank of 2.80, and the standard CapSA coming
in fourth with a mean rank of 3.63.

To judge the significance of the results presented in Tables 4.16 and 4.17, the Wilcoxon
rank sum test p-values are provided in Tables B-4 and B-5 in the Appendix. These statistical
results confirm that each enhanced variant shows either equivalent or superior performance

in the majority of test cases compared to the original CapSA.

129

The convergence and diversity curves for the standard CapSA and its enhanced variants
(MCapSA1, MCapSA2, and MCapSA3) are illustrated in Figures 4.14 and 4.15. These fig-
ures offer significant insights into the search behaviors of these variants on specific test func-
tions that possess diverse characteristics. It is clear that in the early phases of the search pro-
cess, algorithms exhibit a notable degree of diversity, which is indicative of the exploration
phase wherein a comprehensive search is undertaken to investigate the extensive solution
space. As the iterative process advances, there is a decline in diversity, and the trajectories
exhibit variability based on the algorithm’s characteristics. In the observed search dynamics,
the enhanced MCapSA variants are observed to converge faster and maintain a higher level
of diversity across the evaluated functions when compared to the standard CapSA. This be-
havior highlights the effectiveness of the novel strategies incorporated within the enhanced
variants, which aim to enrich the search dynamics. Specifically, The standard CapSA ex-
hibits the lowest diversity among the algorithms, indicating a more rapid shift to exploitation
that may lead to premature convergence. On the other hand, MCapSA1 displays the high-
est diversity; while this enhances its convergence trajectory, the outcome is still suboptimal.
MCapSA2 presents greater diversity than CapSA but less than MCapSAl, leading to an
improved convergence profile. MCapSA3 finds a middle ground, presenting moderate di-
versity levels, which correlates with a more balanced exploration-exploitation compromise
and yields superior convergence performance. The analysis suggests that neither the lowest
nor the highest diversity is desirable in isolation, and an equilibrium between the two, as
exemplified by MCapSA3, is conducive to the most efficient search performance.

After conducting a comprehensive evaluation of CapSA and its enhanced versions on 53
real-valued test functions, it is evident that the proposed enhancements have significantly
improved the optimization capabilities of the original algorithm. Among the investigated
enhancements, MCapSA3 is the most remarkable variant. It incorporates an adaptive dual
update strategy that combines the strengths of both MCapSA1 and MCapSA2. This com-
bination allows MCapSA3 to provide a balance between exploration and exploitation and
thus effectively adapt to various optimization scenarios. Overall, MCapSA3 is an efficient

optimization framework that can tackle a wide range of optimization problems. The em-

130

— CapSAl
. —— MCapSAl
10%4 —— MCapSA2
—— MCapSA3
104 4
4
g 102
&
100 4
1072 4
0 100 200 300 400 500
Iterations
(a) F5-convergence
—— CapSAl
—— MCapSAl
—— MCapSA2
—— MCapSA3
@
2
£ 10°
0 200 400 600 800 1000
Iterations
(¢) F3CEC2014-convergence
1.4x10° —— CapSAl
135x 103 —— MCapSAl
35X —— MCapSA2
13x10° —— MCapSA3
o 1.25x103
4
S 3
£ 12x10
1.15x 103
1.1x10°
0 200 400 600 800 1000
Iterations
(e) FOCEC2014-convergence
1614 x 10° — CapSAL
—— MCapSAl
—— MCapSA2
1.6135 x 10° — MCapSA3
g 1613x10°
5
[
1.6125 x 10°
1.612x 10°
0 200 400 600 800 1000
Iterations

(g) F16CEC2014-convergence

106 4 —— CapSAl
—— MCapSAl
—— MCapSA2
1054 —— MCapSA3
Fol
7
2 10 4
2
103 4
0 160 260 360 460 560
Iterations
(b) F5-diversity
—— CapSAl
107 4 —— MCapSAl
—— MCapSA2
—— MCapSA3
>
.‘é‘
g
B8 108
6 260 460 660 860 10‘00
Iterations
(d) F3CEC2014-diversity
—— CapSAl
107 4 —— MCapSAl
—— MCapSA2
—— MCapSA3
>
.ﬁ
2
a
10°
6 260 460 660 860 10‘00
Iterations
(f) FOCEC2014-diversity
—— CapSAl
—— MCapSAl
1074 —— MCapSA2
—— MCapSA3
2
7
2
fa)
106 4
6 260 460 660 860 ldOO
Iterations

(h) F16CEC2014-diversity

Figure 4.14: Convergence and diversity curves for the standard CapSA and its enhanced
variants on standard test function F5 and sampled IEEE CEC2014 test functions (F3, F9,

and F16)

131

1010

—— CapSAl
—— MCapSAl
109 4 —— MCapSA2
—— MCapSA3
108 4
2
o
5
i 107 4
105 4
105 4
0 200 400 600 800 1000
Iterations
(a) F18CEC2014-convergence
108 J —— CapSAl
—— MCapSAl
—— MCapSA2
—— MCapSA3
& 7
9107 4
5
£
106 4
0 200 400 600 800 1000
Iterations
(c) F21CEC2014-convergence
3
2.78 x 10 Capsal
2.77 x 10° —— MCapSAl
—— MCapSA2
2.76 x 10° —— MCapSA3
2.75x10%
@
$ 2.74x 10
£
&
2.73x 10°
2.72 x 10°
2.71x103
2.7 x 10
0 200 400 600 800 1000
Iterations
(e) F26CEC2014-convergence
—— CapSAl
108 4 —— MCapSAl
—— MCapSA2
—— MCapSA3
107 4
a
6 J
E 10
T
10° 4
104 4
0 200 400 600 800 1000

Iterations

(g) F29CEC2014-convergence

107 4 -
2
)
105 4
6 260 460 660 860 1dOD
Iterations
(b) F18CEC2014-diversity
107 q -7
2
a
106 4
6 260 460 660 860 10‘00
Iterations
(d) F21CEC2014-diversity
107 q -
2z
a
105 4
6 260 460 660 860 10‘00
Iterations
(f) F26CEC2014-diversity
107} 1
10° 4 _1
2z 10° 4
5 10% 4
10° 4
102 4
6 260 460 660 860 1dOD

Iterations

(h) F29CEC2014-diversity

CapSAl
MCapSAl
MCapSA2
MCapSA3

CapSAl

MCapSAl
MCapSA2
MCapSA3

CapSAl

MCapSAl
MCapSA2
MCapSA3

CapSA1l
MCapSAl
MCapSA2
MCapSA3

Figure 4.15: Convergence and diversity curves for the standard CapSA and its enhanced
variants on sampled IEEE CEC2014 test functions (F18, F21, F26, and F29)

132

pirical results confirm the exceptional performance of MCapSA3, making it a significant

advancement in the field of MHs.

4.4.2 Impact of Island-Based Models on CapSA Variants

After verifying the effectiveness of the proposed enhancements to CapSA, this section ex-
plores the impact of island-based models on the standard CapSA and its best-performing en-
hanced variant, MCapSA3, which we will now refer to as ECapSA. These algorithms have
been integrated into an island-based framework, resulting in the development of an island-
based CapSA (iCapSA) and an equivalent island-based model for ECapSA (iECapSA). This
comparison is crucial for understanding how the island model influences the optimization
capabilities of both the original and enhanced versions of CapSA, providing insights into

potential improvements in their search strategies and overall effectiveness.

Table 4.18: Performance comparison of standard CapSA, ECapSA, and their island-based
counterparts iCapSA and iECapSA on 23 Standard mathematical functions

) CapSA ECapSA iCapSA iECapSA

Function =G5 STD AVG STD AVG STD AVG STD

Fl 120E-17 344E-17 276E-18 8.63E-18 1.19E22 5.54E-22 2.08E-24 8.18E-24
F2 376E-10 8.78E-10 7.66E-10 1.15E-09 3.61E-13 7.36E-13 9.6E-14 2.62E-13
F3 1.88E-16 9.54E-16 7.70E-16 2.36E-15 6.48E-19 3.55E-18 1.57E-22 7.58E-22
F4 118E-10 2.02E-10 147E-10 3.37E-10 3.07E-13 928E-13 4.55E-15 8.26E-15
F5 2.12E-03 2.52E-03 5.97E-04 1.54E-03 127E-04 232E-04 1.86E-05 2.34E-05
F6 1.91E-04 3.84E-04 870E-06 129E-05 292E-06 140E-05 2.16E-07 3.54E-07
F7 1.53E-04 124E-04 1.57E-04 1.13E-04 495E-05 4.63E-05 2.61E-05 1.93E-05
F8 -1.26E+04 1.68E-03 -1.26E+04 8.00E-04 -126E+04 257E-04 -1.26E+04 8.91E-05
F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F10 121E-10 2.62E-10 2.00E-10 3.48E-10 7.16E-13 3.12E-12 2.35E-14 8.48E-14
Fl1 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 1.03E-05 1.37E-05 4.43E-07 5.188-07 2.94E-07 8.41E-07 7.85E-09 1.21E-08
Fi3 924E-06 1.24E-05 2.13E-06 3.68E-06 5.68E-07 131E-06 9.65E-08 9.85E-08
Fl4 1.I6E+00 9.00E-01 9.98E-01 9.35E-12 9.98E-01 2.13E-12 9.98E-01 221E-15
F15 590E-04 3.30E-04 322E-04 274E-05 3.16E-04 148E-05 3.08E-04 7.04E-07
F16 JLO3E+00 2.87E-09 -1.O3E+00 6.78E-16 -1.03E+00 7.77E-11 -1.03E+00 6.78E-16
F17 3.98E-01 7.26E-08 3.98E-01 242E-12 398E-01 3.13E-10 3.98E-01 9.36E-16
F18 3.00E+00 6.74E-09 3.00E+00 5.91E-14 3.00E+00 1.24E-10 3.00E+00 7.72E-15
F19 3.81E+00 1.45E-01 -3.86E+00 1.15E-08 -3.86E+00 9.86E-08 -3.86E+00 1.19E-10
F20 3.14E+00 1.29E-01 -3.28E+00 6.28E-02 -326E+00 6.04E-02 -3.32E+00 2.17E-02
E21 -L.O2E+01 5.76E-03 -1.02E+01 8.17E-05 -1.02E+01 1.37E-04 -1.02E+01 3.34E-06
E22 -L.OAE+01 3.92E-03 -1.04E+01 1.17E-04 -1.04E+01 3.23E-04 -1.04E+01 5.64E-06
F23 -1.OSE+01 822E-03 -1.05E+01 1.29E-04 -105E+01 5.58E-04 -1.05E+01 4.17E-06
Mean Rank 3.08 2.82 228 1.82

The comparative results of the standard CapSA and its enhanced variant ECapSA, along-
side their island-based counterparts, iCapSA and iECapSA, on 23 standard mathematical

functions are presented in Table 4.18. The outcomes reveal significant improvements when

133

comparing the standalone algorithms to their island-based counterparts. In comparing iCapSA
to the original CapSA, it is evident that iCapSA performs better across most of the test func-
tions (21 out of 23). The island-based approach improves solution quality and consistency in
the search process, as seen in the lower average values and standard deviations. Furthermore,
when the enhanced version ECapSA is combined with the island-based framework, iECapSA
exhibits even greater improvements in performance. iECapSA outperforms all other variants
in the mean ranks, with the lowest rank of 1.82, indicating its superior performance across
the tested functions. Moreover, iECapSA typically exhibits stable and reliable performance
in most scenarios, as indicated by the lowest standard deviations. This success highlights
the effective collaboration between the enhancements of ECapSA and the strategic approach
of the island-based model. It is worth noting that all variants, including the island-based
models, have achieved the optimal solution for functions F9 and F11. This indicates the
robustness of the algorithms for certain types of optimization problems, where the landscape
allows for clear convergence to the global optimum.

Table 4.19: Performance comparison of standard of Standard CapSA, ECapSA, and their
island-based models iCapSA and iECapSA on the IEEE CEC2014 benchmark functions

CapSA ECapSA iCapSA iECapSA
AVG STD AVG STD AVG STD AVG STD

F1-CEC2014 2.258E+08 1.04E+08 1.027E+08 4.78E+07 6.572E+07 2.48E+07 1.360E+07 6.80E+06
F2-CEC2014 2.096E+10 8.99E+09 4.436E+09 3.66E+09 3.401E+09 1.11E+09 1.981E+08 1.16E+08
F3-CEC2014 6.724E+04 1.10E+04 4.529E+04 1.14E+04 3.986E+04 6.73E+03 8.794E+03 2.52E+03
F4-CEC2014 2.972E+03 1.37E+03 9.302E+02 2.45E+02 9.203E+02 1.51E+02 5.681E+02 2.29E+01
F5-CEC2014 5.207E+02 1.42E-01 5.207E+02 1.80E-01 5.206E+02 1.17E-01 5.204E+02 1.16E-01

F6-CEC2014 6.348E+02 1.98E+00 6.315E+02 3.57E+00 6.322E+02 2.38E+00 6.250E+02 2.15E+00
F7-CEC2014 8.580E+02 4.88E+01 7.582E+02 2.24E+01 7.418E+02 1.13E+01 7.044E+02 1.24E+00
F8-CEC2014 1.025E+03 2.86E+01 9.638E+02 2.83E+01 9.725E+02 2.07E+01 9.016E+02 1.95E+01
F9-CEC2014 1.174E+03 3.01E+01 1.105E+03 3.62E+01 1.138E+03 2.95E+01 1.036E+03 2.36E+01
F10-CEC2014 5.789E+03 1.03E+03 5.333E+03 1.04E+03 4.383E+03 6.22E+02 3.548E+03 5.98E+02
F11-CEC2014 7.058E+03 6.52E+02 6.323E+03 8.02E+02 6.103E+03 4.84E+02 S5.117E+03 4.94E+02
F12-CEC2014 1.202E+03 6.02E-01 1.201E+03 4.51E-01 1.201E+03 2.28E-01 1.201E+03 1.95E-01

F13-CEC2014 1.304E+03 8.15E-01 1.301E+03 8.39E-01 1.300E+03 1.16E-01 1.300E+03 5.33E-02
F14-CEC2014 1.466E+03 2.53E+01 1.412E+03 1.33E+01 1.406E+03 4.67E+00 1.400E+03 3.63E-02
F15-CEC2014 9.224E+03 9.82E+03 2.440E+03 6.77E+02 1.990E+03 5.31E+02 1.532E+03 1.05E+01
F16-CEC2014 1.613E+03 4.01E-01 1.612E+03 6.10E-01 1.612E+03 3.33E-01 1.611E+03 4.25E-01

F17-CEC2014 2.087E+07 1.74E+07 1.373E+07 3.09E+07 2.442E+06 1.73E+06 5.922E+05 4.12E+05
F18-CEC2014 1.367E+08 3.17E+08 7.662E+07 3.02E+08 3.796E+05 6.78E+05 3.386E+03 1.26E+03
F19-CEC2014 2.054E+03 5.92E+01 1.978E+03 4.25E+01 1.958E+03 2.36E+01 1.917E+03 2.69E+00
F20-CEC2014 6.465E+04 6.28E+04 2.370E+04 1.42E+04 2.001E+04 7.07E+03 3.137E+03 5.48E+02
F21-CEC2014 7.614E+06 9.57E+06 1.561E+06 1.26E+06 9.363E+05 1.16E+06 8.809E+04 1.04E+05
F22-CEC2014 3.171E+03 3.20E+02 2.866E+03 2.33E+02 2.774E+03 1.71E+02 2.478E+03 1.28E+02
F23-CEC2014 2.500E+03 1.44E-08 2.500E+03 1.72E-08 2.500E+03 2.33E-11 2.500E+03 0.00E+00
F24-CEC2014 2.600E+03 2.28E-05 2.600E+03 3.54E-05 2.600E+03 4.95E-07 2.600E+03 4.72E-07
F25-CEC2014 2.700E+03 1.26E-10 2.700E+03 4.05E-10 2.700E+03 0.00E+00 2.700E+03 0.00E+00
F26-CEC2014 2.739E+03 4.71E+01 2.708E+03 2.53E+01 2.701E+03 1.24E+00 2.700E+03 7.84E-02
F27-CEC2014 2.900E+03 2.37E-09 2.900E+03 1.44E-09 2.900E+03 3.66E-12 2.900E+03 1.86E-12
F28-CEC2014 3.000E+03 4.80E-09 3.000E+03 1.17E-08 3.000E+03 2.25E-11 3.000E+03 4.62E-12
F29-CEC2014 3.100E+03 2.59E-02 3.100E+03 1.25E-02 3.100E+03 3.19E-05 3.100E+03 3.38E-06
F30-CEC2014 3.200E+03 3.22E-03 3.200E+03 1.22E-03 3.200E+03 6.90E-05 3.200E+03 3.71E-05

Mean Rank 3.63 2.75 222 1.40

Functions

The results presented in Table 4.19 for the IEEE CEC2014 suite demonstrate a remark-

134

able improvement in optimization performance when incorporating island-based models.
The comparison of iCapSA with CapSA indicates a clear trend of enhanced performance
with iCapSA, which is further improved in the case of iECapSA when compared to ECapSA.
This pattern is observed across the majority of the functions, indicating the beneficial im-
pact of the island-based model in enhancing the algorithms’ capabilities. In particular, the
iECapSA variant shows the most pronounced improvements by achieving better average
scores across test functions and lower standard deviations, indicating strong and consistent
performance. Moreover, the average rank of 1.40 for iECapSA is much lower than other
variants, strongly proving its superior optimization efficiency within this challenging set of
functions. These findings highlight the effectiveness of island-based models and their sig-
nificant role in improving search dynamics and performance, particularly when dealing with
complex optimization challenges presented by the IEEE CEC 2014 suite.

The qualitative outcomes of the original algorithm CapSA and its enhanced variants
ECapSA and iECapSA are displayed in Figures 4.16 and 4.17. These figures depict the
convergence and population diversity curves for selected test problems. According to the di-
versity curves illustrated in these figures, it is clear that as iterations progress, the diversity in
the standard CapSA population gradually declines, showing smoother patterns that indicate
a shift toward more exploitation-focused behavior. As illustrated by the convergence trends,
this rapid decrease in diversity often leads to stagnation, a common issue in the conventional
CapSA where it prematurely converges to local optima in the majority of test instances. On
the other hand, the iECapSA variant exhibits highly oscillatory behavior, which highlights
its better capacity to efficiently balance exploration and exploitation. These findings confirm
that the migration approach in iECapSA, which involves exchanging information between
different populations, introduces additional diversity in candidate solutions and causes more
noticeable oscillations in diversity curves. In summary, it is clear that neither extremely high
nor extremely low diversity constantly produces better results; rather, preserving an ideal

balance of diversity is essential for achieving the best results in the majority of situations.

135

—— CapSAl
106 4 —— MCapSA3
—— iMCapSA3
10A 4
? 1024
Q
£
Y1004
1072 4
1074
300 500
Iteratlons
(a) F5-convergence
—— CapSAl
—— MCapSA3
—— iMCapSA3
105 4
@
4]
5
i
loA 4
400 600 1000
Iterations
(¢) F3CEC2014-convergence
1.4 x10° —— CapsAl
1.35x 103 —— MCapSA3
—— iMCapSA3
1.3x10°
1.25x 103
@
g 12 x 103
i
1.15x 103
1.1x10°
1.05x 103
400 600 1000
Iterations

(e) FOCEC2014-convergence

—— CapSAl
——— MCapSA3
—— iMCapSA3

1000

1.614 x 10°

1.6135 x 10°

1.613 x10°

Fitness

1.6125 x 10°

1.612x 10°

1.6115 x 103

600
Iteratlons

(g) F16CEC2014-convergence

10° 4 —— CapSAl
—— MCapSA3
—— iMCapSA3
105 4
>
B 10%5
2
a8
103 4
102 4
0 160 260 360 460 560
Iterations
(b) F5-diversity
—— CapSAl
107 4 —— MCapSA3
—— iMCapSA3
>
.‘é‘
g
B 10°
6 260 460 660 860 1dOO
Iterations
(d) F3CEC2014-diversity
—— CapSAl
107 —— MCapSA3
—— iMCapSA3
>
.ﬁ
2
a
10°
6 260 460 660 860 1600
Iterations
(f) FOCEC2014-diversity
—— CapSAl
107 4 — !VICapSAa
—— iMCapSA3
2
7
2
fa)
105 4
6 260 460 660 860 ldOO
Iterations

(h) F16CEC2014-diversity

Figure 4.16: Comparative analysis of convergence and diversity curves for CapSA,
ECapSA, and iECapSA on standard test function F5 and sampled IEEE CEC2014 test

functions (F3, F9, and F16)

136

10
10 —— CapSAl

—— MCapSA3
—— iMCapSA3

1000

10° 4

10° 4

107§

Fitness

106 4
105 4

10* 4

400 600
Iterations

(a) F18CEC2014-convergence

) %

1000

CapSAl
MCapSA3
iMCapSA3

107 4

Fitness

106 4

1054

400 600
Iterations

(¢) F21CEC2014-convergence

3
2.78 x 10 CapSAl
——— MCapSA3

2.77 x 10°
—— iMCapSA3

2.76 x 103

2.75x 103

2.74x 103

Fitness

2.73x 103

2.72x10%

271x 103

400 600
Iterations

2.7 x10°

0 200 800 1000

(e) F26CEC2014-convergence

CapSAl
MCapSA3
iMCapSA3

T T T T
400 600 800 1000
Iterations

T
200

o4

(g) F29CEC2014-convergence

—— CapSAl

107 4 —— MCapSA3
—— iMCapSA3
>
"UZ
2
a
106 4
6 260 460 660 860 10‘00
Iterations
(b) F18CEC2014-diversity
—— CapSAl
107 q —— MCapSA3
—— iMCapSA3
>
.ﬁ
2
a
106 4
6 260 460 660 860 10‘00
Iterations
(d) F21CEC2014-diversity
—— CapSAl
107 4 —— MCapSA3
—— iMCapSA3
>
.ﬁ
2
)
106 4
6 260 460 660 860 1d00
Iterations
(f) F26CEC2014-diversity
107 4 — CapSAl
—— MCapSA3
S \.........{ \ \ —— iMCapSA3
10° 4
> 10° §
"UZ
o
& 10%4
103 4
102 4
6 260 460 660 860 ldOO
Iterations

(h) F29CEC2014-diversity

Figure 4.17: Comparative analysis of convergence and diversity curves for CapSA,
ECapSA, and iECapSA on sampled IEEE CEC2014 test functions (F18, F21, F26, and F29)

137

4.5 Impact of the Adaptive Island Migration Policy

After conducting a thorough validation of the modifications made to the CSA and CapSA,
and examining the benefits of integrating the island model’s principles, this section shifts
its focus to evaluating the impact of the newly introduced adaptive migration policy. This
comparative analysis aims to uncover how an adaptive migration framework differs from its
fixed counterpart in terms of improving the overall effectiveness of the search algorithms
and the quality of solutions generated. To facilitate this exploration, the top-performing
enhanced variants, iIECSA and iECapSA, have been chosen for pairwise comparison under
both migration paradigms. It is important to mention that the fixed migration paradigm was

meticulously selected based on extensive tuning, as elaborated in the earlier sections.

Table 4.20: Comparative performance of iECSA and iECapSA with static and adaptive
migration policies on 30-dimensional standard mathematical functions

iECSA iCapSA
Function static migration Adaptive migration static migration Adaptive migration
AVG STD AVG STD AVG STD AVG STD

F1 7.666E-08 1.41E-07 7.528E-09 246E-08 | 2.078E-24 8.18E-24 4.260E-26 1.30E-25
F2 1.076E-04 1.94E-04 6.901E-06 7.27E-06 | 9.164E-14 2.62E-13 2.747E-14 6.22E-14
F3 4.189E-05 8.98E-05 2.802E-06 9.69E-06 | 1.566E-22 7.58E-22 6.768E-24 1.89E-23
F4 4.959E-05 6.98E-05 4.815E-07 1.18E-06 | 4.551E-15 8.26E-15 8.239E-15 2.03E-14
F5 8.640E-06 2.95E-05 1.637E-06 6.77E-06 | 1.865E-05 2.34E-05 1.208E-05 1.08E-05
F6 2.923E-07 6.90E-07 2.192E-08 9.51E-08 | 2.161E-07 3.54E-07 1.089E-07 2.00E-07
F7 2.152E-04 1.35E-04 1.959E-04 1.07E-04 | 2.613E-05 1.93E-05 3.733E-05 2.91E-05
F8 -1.257E+04 2.08E-03 -1.257E+04 3.88E-05 | -1.257E+04 8.91E-05 -1.257E+04 5.81E-05
F9 1.063E-07 2.90E-07 4.896E-09 1.43E-08 | 0.000E+00 0.00E+00 0.000E+00 0.00E+00
F10 4.625E-05 5.19E-05 9.983E-06 1.51E-05 | 2.354E-14 8.48E-14 2.283E-14 6.70E-14
Fl11 3.268E-07 7.42E-07 3.143E-08 7.15E-08 | 0.000E+00 0.00E+00 0.000E+00 0.00E+00
F12 1.385E-09 2.85E-09 3.289E-11 6.60E-11 | 7.848E-09 1.21E-08 4.534E-09 4.87E-09
F13 2.616E-08 7.58E-08 7.440E-10 2.45E-09 | 9.653E-08 9.85E-08 1.031E-07 1.52E-07
F14 9.980E-01 3.39E-16 9.980E-01 3.39E-16 | 9.980E-01 2.21E-15 9.980E-01 7.97E-15
F15 3.075E-04 3.93E-16 3.075E-04 2.72E-09 | 3.076E-04 7.04E-07 3.076E-04 1.92E-07
Fl16 -1.032E+00 6.78E-16 -1.032E+00 6.78E-16 | -1.032E+00 6.78E-16 -1.032E+00 6.78E-16
F17 3.979E-01 1.13E-16 3.979E-01 1.13E-16 | 3.979E-01 9.36E-16 3.979E-01 5.83E-15
F18 3.000E+00 4.52E-16 3.000E+00 4.52E-16 | 3.000E+00 7.72E-15 3.000E+00 7.41E-15
F19 -3.863E+00 1.36E-15 -3.863E+00 1.36E-15 | -3.863E+00 1.19E-10 -3.863E+00 6.38E-11
F20 -3.322E+00 2.26E-04 -3.322E+00 5.15E-04 | -3.318E+00 2.17E-02 -3.314E+00 3.02E-02
F21 -1.015E+01 1.81E-15 -1.015E+01 1.81E-15 | -1.015E+01 3.34E-06 -1.015E+01 2.82E-06
F22 -1.040E+01 9.03E-15 -1.040E+01 9.03E-15 | -1.040E+01 5.64E-06 -1.040E+01 4.76E-06
F23 -1.054E+01 9.03E-15 -1.054E+01 9.03E-15 | -1.054E+01 4.17E-06 -1.054E+01 7.41E-06
Mean Rank 1.76 1.24 1.57 1.43

When analyzing the outcomes presented in Table 4.20, it becomes clear that the adaptive
migration policy consistently outperforms the static policy in the context of the enhanced
island-based variants, namely iECSA and iECapSA. This adaptive policy, which dynamically

adjusts migration rates between 0.1 and 0.8, yields superior results compared to the static

138

policy’s fixed rate of 0.3—a rate determined through extensive experimentation as detailed
in previous sections.

The detailed results of iECSA underscore the superior performance of the adaptive mi-
gration policy, which surpasses its static counterpart in about 56.5% of the first 23 cases,
specifically for functions F1 to F13. This notable majority of the benchmark suite show-
cases the adaptive migration policy’s ability for real-time adjustments, thereby enhancing
the algorithmic precision and effectiveness in a majority of tested scenarios. Moreover, in
the remaining functions, iIECSA with adaptive migration competes closely with, and at most
times matches, the performance of the static policy. This demonstrates its broad applicabil-
ity and reliability across a wide range of optimization challenges. The mean rank for iECSA
improves from 1.76 under the static migration policy to 1.24 with adaptive migration. These
improvements are evident across individual functions, where adaptive migration frequently
achieves more favorable average values and lower standard deviations. This not only indi-
cates better performance but also underscores greater reliability and consistency.

The improvements facilitated by the adaptive migration policy in iECapSA, although
not as significant as in iECSA, are still worth noting. IECapSA with adaptive migration
demonstrates superior performance in 10 instances, indicating a significant improvement in
its search capabilities. The improvements highlight the importance of the adaptive policy
in fine-tuning the algorithm’s behavior. This approach allows for more focused and context-
aware exploration and exploitation, especially in intricate optimization scenarios where fixed
policies may fall short.

Table 4.21 presents the comparative results of iECSA and iIECapSA under both static and
adaptive migration policies in the context of 30-dimensional CEC2014 benchmark functions.
it becomes clear how iECSA and iECapSA perform differently under static and adaptive mi-
gration policies. The performance of the adaptive migration policy in iIECSA does not consis-
tently surpass that of the static policy. While iECSA with adaptive migration shows superior
performance in fewer cases compared to the standard benchmarks, it remains competitive,
even equivalent, in most of the remaining functions. This indicates that the complexity of

CEC2014 functions may necessitate a more refined approach to adjusting migration rates.

139

Table 4.21: Comparative analysis of iECSA and iECapSA performance on 30-dimensional
CEC2014 benchmark functions with static and adaptive migration policies

iECSA iCapSA
Function static migration Adaptive migration static migration Adaptive migration
AVG STD AVG STD AVG STD AVG STD

F1-CEC2014 | 5.001E+06 1.98E+06 5.331E+06 2.13E+06 | 1.360E+07 6.80E+06 1.569E+07 1.16E+07
F2-CEC2014 | 4.071E+03 3.08E+03 1.652E+03 1.90E+03 | 1.981E+08 1.16E+08 2.301E+08 8.63E+07
F3-CEC2014 | 3.825E+03 1.06E+03 4.269E+03 1.45E+03 | 8.794E+03 2.52E+03 9.988E+03 2.95E+03
F4-CEC2014 | 4936E+02 3.49E+01 4.900E+02 2.88E+01 | 5.681E+02 2.29E+01 5.824E+02 3.01E+01
F5-CEC2014 | 5.200E+02 5.62E-04 5.200E+02 4.96E-04 | 5.204E+02 1.16E-01 5.204E+02 1.24E-01
F6-CEC2014 | 6.272E+02 1.81E+00 6.265E+02 1.94E+00 | 6.250E+02 2.15E+00 6.244E+02 2.53E+00
F7-CEC2014 | 7.000E+02 5.53E-03 7.000E+02 5.08E-03 | 7.044E+02 1.24E+00 7.051E+02 1.90E+00
F8-CEC2014 | 9.025E+02 1.16E+01 9.034E+02 1.39E+01 | 9.016E+02 1.95E+01 8.966E+02 1.84E+01
F9-CEC2014 | 1.013E+03 1.35E+01 1.014E+03 1.28E+01 | 1.036E+03 2.36E+01 1.036E+03 2.10E+01
F10-CEC2014 | 3.877E+03 5.21E+02 3.834E+03 4.49E+02 | 3.548E+03 5.98E+02 3.511E+03 4.72E+02
F11-CEC2014 | 4.122E+03 3.85E+02 4.254E+03 4.49E+02 | 5.117E+03 4.94E+02 5.053E+03 4.49E+02
F12-CEC2014 | 1.201E+03 1.84E-01 1.201E+03 2.41E-01 | 1.201E+03 1.95E-01 1.201E+03 1.98E-01
F13-CEC2014 | 1.300E+03 7.29E-02 1.300E+03 6.31E-02 | 1.300E+03 5.33E-02 1.300E+03 7.85E-02
F14-CEC2014 | 1.400E+03 4.43E-02 1.400E+03 4.06E-02 | 1.400E+03 3.63E-02 1.400E+03 4.51E-02
F15-CEC2014 | 1.511E+03 3.00E+00 1.513E+03 4.21E+00 | 1.532E+03 1.05E+01 1.529E+03 1.04E+01
F16-CEC2014 | 1.612E+03 4.23E-01 1.612E+03 3.58E-O1 | 1.611E+03 4.25E-01 1.611E+03 4.28E-01
F17-CEC2014 | 6.646E+04 5.52E+04 6.593E+04 4.78E+04 | 5.922E+05 4.12E+05 4.873E+05 4.54E+05
F18-CEC2014 | 2.035E+03 2.93E+01 2.048E+03 5.03E+01 | 3.386E+03 1.26E+03 4.572E+03 2.68E+03
F19-CEC2014 | 1.917E+03 2.08E+00 1.916E+03 1.95E+00 | 1.917E+03 2.69E+00 1.917E+03 2.62E+00
F20-CEC2014 | 2.355E+03 1.20E+02 2.390E+03 1.32E+02 | 3.137E+03 5.48E+02 2.926E+03 3.70E+02
F21-CEC2014 | 2.470E+04 1.73E+04 2.617E+04 1.34E+04 | 8.809E+04 1.04E+05 8.474E+04 8.74E+04
F22-CEC2014 | 2.639E+03 1.51E+02 2.650E+03 1.23E+02 | 2.478E+03 1.28E+02 2477E+03 8.94E+01
F23-CEC2014 | 2.617E+03 5.92E-01 2.617E+03 6.92E-01 | 2.500E+03 0.00E+00 2.500E+03 0.00E+00
F24-CEC2014 | 2.610E+03 5.78E+00 2.615E+03 5.68E+00 | 2.600E+03 4.72E-07 2.600E+03 3.43E-07
F25-CEC2014 | 2.702E+03 3.19E+00 2.704E+03 3.21E+00 | 2.700E+03 0.00E+00 2.700E+03 0.00E+00
F26-CEC2014 | 2.700E+03 7.01E-02 2.700E+03 7.32E-02 | 2.700E+03 7.84E-02 2.700E+03 1.03E-01
F27-CEC2014 | 3.107E+03 4.41E+00 3.106E+03 2.65E+00 | 2.900E+03 1.86E-12 2.900E+03 2.55E-12
F28-CEC2014 | 5.794E+03 6.28E+02 5.772E+03 4.78E+02 | 3.000E+03 4.62E-12 3.000E+03 6.65E-12
F29-CEC2014 | 6.777E+03 1.92E+03 6.645E+03 1.95E+03 | 3.100E+03 3.38E-06 3.100E+03 2.81E-07
F30-CEC2014 | 1.529E+04 4.56E+03 1.543E+04 3.67E+03 | 3.200E+03 3.71E-05 3.200E+03 5.65E-05

Mean Rank 1.43 1.57 1.55 1.44

The average rank is slightly lower with the static migration policy (1.43) in comparison to
the adaptive migration policy (1.57). Conversely, iIECapSA demonstrates a slight preference
for the adaptive migration policy, which yields a slightly better mean rank (1.44) over the
static policy (1.55). Charts in Figure 4.18 highlight the performance of iECSA and iECapSA
using static and adaptive migration policies across standard and CEC2014 benchmark func-
tions. It is important to mention that the static migration policy has been optimized through
extensive experimentation to achieve the best-performing rate of 0.3. On the other hand, the
adaptive migration policy calculates rates dynamically between 0.1 and 0.8, which allows
for a customized approach to each specific problem without the need for time-consuming
pre-tuning.

In summary, the results from both standard and CEC2014 benchmark functions clearly

140

highlight the effectiveness of the adaptive migration policy compared to the static approach.
This adaptive policy, which dynamically fine-tunes the search process in real-time, is par-
ticularly beneficial in diverse and unpredictable optimization landscapes. In contrast to the
static policy, which requires meticulous pre-tuning, the adaptive policy is robust and flexible.
Its capacity to adapt to different problem demands makes it a practical and efficient choice.
It streamlines the search process and provides acceptable outcomes without the need for
the extensive time investment typically required to fine-tune migration rates. The findings
across both benchmark suites underscore the importance of incorporating adaptability into
the migration strategies of metaheuristic algorithms. This demonstrates how it can improve

algorithmic performance and make them more applicable in real-world scenarios.

1.8
1.7
1.6

1.76
1.57 157 155

15 143 15 1.43 1.44
1.4 1.4
13 1.24 13
12 12
11 1.1

1 1

Standard CEC2014 Standard CEC2014

M static ™ adaptive W static m adaptive

(a) iECSA (b) iECapSA

Figure 4.18: Mean rank comparison of iECSA and iECapSA with static and adaptive
migration policies based on results in Tables 4.20 and 4.21

141

4.6 Experiments and Results of Real-World Applications

This section presents the practical applications of the iECSA and iECapSA models in real-
world real-world scenarios. The efficacy of these models in addressing complex, practical
problems, such as neural network training, image segmentation, and optimization of software
reliability growth models will be analyzed. Initially, the performance of the models in neural
network training with key metrics will be discussed in Section 4.6.1. Subsequently, Section
4.6.2 explores the application of these models in image segmentation and illustrates their
impact on multilevel thresholding. Finally, in Section 4.6.3, the optimization of parameters
within software reliability growth models in the domain of software engineering will be
examined.

For each distinct problem, a clear problem formulation will be presented to help readers
understand the challenges being addressed. This approach will make it easier for them to
grasp the results and their implications. Additionally, this section will present and discuss in
detail the experimental results, demonstrating the practical viability and effectiveness of the

iECSA and iECapSA models in real-world applications.

4.6.1 Experimental Results: Neural Network Training

Feedforward Neural Network (FNN) is an artificial neural network where data flows in a
unidirectional manner, moving from the input layer through the hidden layers to the output
layer, without any feedback connections [238]. In this architecture, the input layer accepts
the input data, the hidden layer(s) process the input data using a set of weights and activation
functions, and the output layer generates the final output. Figure 4.19 provides an example
of an FNN that has three input features, one hidden layer, and one output layer.

The mathematical model of the FNN relies on three primary components: input features,
biases, and weights. The input layer receives a vector of features (i.e., input variables), while
each neuron in the other layers performs a summation function and an activation function.
The summation function calculates the weighted sum of inputs by multiplying them with

their corresponding weights, adding a bias term, and applying an activation function, as

142

Hidden layer

X1

utput layer
X put lay

XN

Figure 4.19: Simple FNN architecture with one hidden layer

shown in Eq. (4.6).

n
S]:ZWIJXXI+BJ j:l,z, m (4'6)
=1

im
where m represents the total number of hidden nodes. Meanwhile, n stands for the total
number of input nodes. Each connection between the ith input node X; and the jth hidden
node has a connection weight w;;, and each hidden neuron j has a bias term f3;.

Once the aggregation function defined in Eq. (4.6) is computed, an activation function is
applied to activate the neurons’ output. FNN networks can utilize several types of activation
functions. In this research, the sigmoid function is used, which has been frequently applied in
previous studies involving FNN networks [239, 240]. This function is used to propagate the
weighted output of the hidden layer to the subsequent layer. Eq. (4.7) is used to determine

the output of node j in the hidden layer.

J=1,2,m 4.7)

where h; represents the sigmoid activation function that is applied to the jth node in the
middle layer, while S refers to the summation obtained from Eq. (4.6). Once the output for
each neuron in the middle layer is computed, the next step is to determine the output of the

FNN network. This can be done by applying Eq. (4.8).

J

m
v = sigmoid (wjxh; —|—B> (4.8)
=1

143

After constructing the neural network, the weights linked with the network are adapted to
approximate the desired outcomes. To accomplish this, a training algorithm is utilized to

modify the weights in an iterative manner until a certain error criterion is met.

4.6.1.1 Optimization Algorithms for Training FNN

During the training process of a FNN, the main objective is to assign appropriate weights and
biases that can maximize the prediction performance or minimize the prediction error [240].
This process is considered as an optimization problem. Two primary families of optimization
algorithms, deterministic and stochastic, can be used to train the FNN. While deterministic
algorithms like backpropagation and traditional gradient descent are simple and fast, they
often get stuck in local optima, known as the premature convergence problem. On the other
hand, stochastic algorithms are relatively slower but have the ability to reduce the prematu-
rity problem [241]. Recently, stochastic techniques such as metaheuristic algorithms have
been widely adopted as alternatives to traditional methods for training FNN networks, and
they have shown promising results in most FNN-related problems. The following subsection
presents the problem formulation, including the objective function and solution representa-

tion.

4.6.1.2 MHs-based Optimization of FNN: Problem Formulation

To adapt SI algorithms for optimization problems, two key steps are necessary: defining
the solution representation and formulating the objective function [242]. In the realm of
neural network training, the goal is to optimize the weights of a neural network to minimize
the difference between the predicted output and the actual output for a given set of inputs.
Particularly, in this study, the primary aim is to find the optimal values for weights and biases
of a single hidden layer FNN that would yield the lowest prediction error. Consequently, the

solution representtaion and the fitness function are formulated as follows:

* Solution Representation: A vector of real values was employed to encode the so-

lution, as described by Eq. (4.9). The encoded solution is illustrated in Figure 4.20.

=

X ={W,B} 4.9)
144

where the weights and biases are denoted as W and B respectively, and their values
are assumed to be within the range of [-1, 1] [240]. Although there is no established
method in the literature for determining the optimal number of neurons in the hidden
layer, in this study, the approach proposed in [239, 240] is utilized. This technique
sets the number of hidden neurons (H) as (2 x F + 1), where F represents the number
of features in the dataset. Consequently, the dimension of each solution (i.e., D) is

calculated as shown in Eq. (4.10).

D=(FxH)+(2xH)+1 (4.10)

Weights between inputs Weights between hidden
and hidden layer datasat layer and output layer

w"" W12 -~ wrrn |—

Figure 4.20: Solution representation for MHs-Based training of FNN

Bias weights

* Objective Function: Once the solution representation in FNN has been established,
the subsequent step is to formulate an objective function to assess the quality of the
produced solutions. In this study, we employed the Mean Squared Error (MSE) as our
chosen metric for evaluating FNNSs, as it is a widely used technique for this purpose
[240]. The assessment of solutions involved inputting the generated weights and biases

into the FNN and then computing the MSE, which is represented in Eq. (4.29).

n

1
MSE = ZZ(y—)A))z (4.11)
i=1

where y and y represent the actual and estimated values, respectively. n is the number
of training samples. This formulation allows the metaheuristic algorithms to navigate
the weight space in search of configurations that yield the highest accuracy or the

lowest loss.

145

4.6.1.3 Optimizing FNN Using Cooperative Island-Based model

Figure 4.21 illustrates the application of the proposed optimization model to elevate the
effectiveness of FNN in tackling binary classification tasks. This process incorporates a
series of steps, starting with the careful selection of preprocessed biomedical datasets that
have undergone thorough cleaning and normalization to serve as reliable benchmarks. To
ensure a thorough and accurate evaluation of the model’s predictive abilities, the datasets are

divided into two sets for training and testing.

Apply Steps of Island-based
Optimization Model
Where the evaluation process
assigns weights and biases to FNN
and calculate MSE as fitness value

Load Biomedical Dataset

Train FNN with optimized weights |
and biases from best fitness l
Split Data into train and test Return the beat solution X*
datasets Y
Forecast on the test dataset
v v
Construct the FNN according to the| | Calculate Classification accuracy End
input features

Figure 4.21: Flowchart of optimizing FNN with the cooperative island-based model

In the next step, the FNN’s architecture is designed, taking into account the input at-
tributes of the dataset (as explained in Section). Once established, the cooperative island
model is activated, launching an optimization process. This process involves evaluating po-
tential solutions, which are represented by different weight and bias configurations, through
the network. fitness values are measured using the MSE to provide a clear idea of success.
The optimization process continues until a specific termination condition is met, which could
include reaching the maximum number of iterations. This continuous cycle ultimately leads
to the discovery of the best solution, determined by the weights and biases that produce
the lowest MSE. With these optimized parameters, the FNN is trained and then deployed to
make predictions on the test data. To judge the success of the optimization in improving the

FNN’s predictive capabilities, the classification accuracy metric is calculated as the final step

146

in the process.

4.6.1.4 Experimental Setup

The objective of this experiment is to evaluate the performance of the iECSA and iECapSA
models in optimizing the weights of FNN neural networks for biomedical classification tasks
to improve the classification quality. For both iECSA and iECapSA, the population size was
set to 50, with a maximum of 200 iterations (i.e., 10000 evaluations). To accommodate the
stochastic nature of the metaheuristic algorithms, each model was executed 20 independent
times on every dataset. Specific parameter settings for both iECSA and iECapSA were fine-
tuned based on preliminary experiments to ensure optimal performance.

Experiments were conducted on seven biomedical datasets for classification. Data nor-
malization was applied as a preprocessing step for each dataset to scale input features into a
uniform range. In the experiments conducted, min-max normalization was performed, which
is a linear transformation on the original data, as shown in Eq. 4.12. Here, X represents the
original data, X ormalizeq denotes the normalized data, while Xy,j, and Xpax represent the min-

imum and maximum values of X, respectively.

X — Xy
Xnormalized = X—mln (412)

max — Xmin

All datasets are divided into 66% for training and 34% for testing. For a fair comparison,
pre-split data is used across all experiments, ensuring that the same training and testing sets
are used to evaluate each algorithm. This setup helps validate the models’ performance in
generalizing beyond the training data. Accuracy and F1-score served as the primary mea-
sures of classification performance. These metrics were chosen to provide a comprehensive
view of the models’ predictive capabilities, ensuring both the correctness and balance of the

predictions made.

4.6.1.5 Experimental Procedures

The effectiveness of the neural network training using the enhanced iECSA and iECapSA

models will be comprehensively evaluated through a series of experiments. The experimental

147

design includes three main experiments.
* Baseline Comparison: The first experiment involves a comparative analysis between

the basic variants of CSA and CapSA and their enhanced counterparts.

* Comparison with Stochastic Gradient Descent Solvers: Subsequent experiments com-
pare the top-performing variants, IECSA and iECapSA, against traditional stochastic

gradient descent solvers, including Adam and SGD (Stochastic Gradient Descent).

* Benchmarking Against Established Metaheuristics: The final set of experiments po-
sitions the proposed enhanced variants against a diverse set of well-established meta-
heuristic algorithms sourced from different categories. This comprehensive compari-
son is intended to validate the performance of the proposed models within a broader

spectrum of optimization techniques.

4.6.1.6 Tested Biomedical Datasets

This study evaluates the effectiveness of the enhanced models in training FNN using seven
real biomedical datasets sourced from the UCI machine learning repository [220]. These
datasets were chosen based on their relevance to binary classification problems in biomed-
ical informatics and machine learning. By focusing on biomedical datasets, this research
emphasizes the significance of advanced algorithmic approaches in medical diagnostics. Fur-
thermore, it contributes to the optimization field by improving predictive modeling.

The biomedical datasets cover a wide range of biomedical problems. These datasets dif-
fer in complexity, with varying numbers of features, instances, and patterns, which makes
the optimization process more challenging. The diversity of these datasets ensures that the
empirical analysis is thoroughly tested across different real-world scenarios. A detailed de-

scription of these datasets is presented in Table 4.22

4.6.1.7 Evaluation Metrics

In the field of optimizing neural network parameters, performance are measured using MSE
as a fitness functions (see Eq.4.29) and classification quality metrics like accuracy, recall,

and precision [243].

148

Table 4.22: Description of the biomedical datasets used for evaluating the training of FNN

Dataset #Features #samples Hidden Layer FNN structure
Blood 4 748 9 4-9-2
BreastCancer 8 699 17 8-17-2
Diabetes 8 768 17 8-17-2
diagnosis_II 6 120 13 6-13-2
Liver 6 345 13 6-13-2
Parkinsons 22 195 45 22-45-2
Vertebral 6 310 13 6-13-2

The classification quality is usually estimated using a special table named the confusion
matrix. Table 4.23 presents the confusion matrix used to evaluate the binary classification
model. In this system, instances are classified into two categories: positive or negative.
The outcomes fall into one of four possible categories: True positives (TP) represent the
instances correctly identified as positive. False positives (FP) are instances incorrectly iden-
tified as positive. True negatives (TN) are the instances correctly identified as negative, and
false negatives (FN) are the instances incorrectly identified as negative. Various evaluation
measures can be derived from the outcomes of the confusion matrix. In this study, accuracy
and FI-score are key metrics for evaluating the performance of the proposed binary classi-
fication model. Accuracy, widely used in the classification of biomedical data [239, 160],
measures the overall correctness of the model, while the F1-score provides a balance be-
tween precision and recall, particularly valuable when the cost of false positives and false
negatives is high or when there is an imbalance in class distribution. Eq. 4.13 provides the

accuracy formula, and Eq. 4.16 provides the formula for the F1-score.

Table 4.23: Confusion matrix for binary classification.

’ \ Predicted positive \ Predicted negative ‘

Actual positive | True Positive (TP) | False Negative (FN)
Actual negative | False Positive (FP) | True Negative (TN)

TP+TN

Accuracy = 4.13)
TP+TN+FP+FN
TP
Precision = ———— 4.14)
TP+ FP

149

TP

Recall = ——
TP+FN

(4.15)

Precision x Recall

F1-Score =2 x (4.16)

Precision + Recall

4.6.1.8 Comparative Analysis of Basic and Enhanced Variants of CSA and CapSA

A direct comparison of the MSE for the original and improved CSA and CapSA models is
presented in Table 4.24. The iIECapSA model exhibits a clear advantage by achieving the
lowest MSE values on the majority of datasets (6 out of 7). This is quantitatively evidenced
by its leading mean rank of 1.14, which signifies its outstanding performance in minimizing
error rates. Conversely, the original CSA and CapSA exhibit higher MSEs. Notably, the stan-
dard CSA and ECapSA models exhibit a competitive performance. However, the ECapSA

model shows notable improvement over CapSA, especially on datasets like ’diagnosis_II’

and ’Vertebral’.

Table 4.24: MSE results for CSA and CapSA variants across biomedical datasets

Data Measure CSA ECSA CapSA ECapSA iECSA iECapSA
Blood AVG 1.555E-01 1.574E-01 1.585E-01 1.551E-01 1.560E-01 1.541E-01
STD 5.942E-04 1.558E-03 2.886E-03 8.996E-04 8.075E-04 9.570E-04
BreastCancer | AVG 3.977E-02 4.324E-02 4.987E-02 4.106E-02 4.123E-02 3.897E-02
STD 5.476E-04 2.141E-03 7.012E-03 1.389E-03 8.330E-04 1.271E-03
Diabetes AVG 1.622E-01 1.857E-01 1.851E-01 1.600E-01 1.765E-01 1.563E-01
STD 2.720E-03 1.055E-02 1.102E-02 3.916E-03 6.044E-03 1.756E-03
diagnosis_II | AVG 8.396E-03 3.685E-02 4.531E-02 6.551E-03 1.855E-02 4.511E-03
STD 3.313E-03 1.396E-02 2.596E-02 3.497E-03 5.274E-03 2.021E-03
Liver AVG 2.144E-01 2.271E-01 2.264E-01 2.049E-01 2.225E-01 2.008E-01
STD 3.341E-03 4.923E-03 7.042E-03 4.131E-03 3.422E-03 3.746E-03
Parkinsons AVG 1.086E-01 1.225E-01 1.345E-01 1.151E-01 1.144E-01 1.122E-01
STD 2.879E-03 6.269E-03 8.827E-03 6.036E-03 3.156E-03 2.275E-03
Vertebral AVG 1.505E-01 1.608E-01 1.699E-01 1.419E-01 1.561E-01 1.372E-01
STD 2.945E-03 5.269E-03 1.149E-02 5.167E-03 4.572E-03 3.628E-03
Mean Rank 2.57 5.29 5.71 2.43 3.86 1.14

In contrast to what was expected, the fundamental CSA model surpasses its enhanced
counterpart, ECSA. This indicates that for certain datasets, the original algorithm’s mech-
anisms might be more effective. Conversely, the ECapSA model produces superior MSE
outcomes compared to the original CapSA model, indicating that the improvements incor-

porated into CapSA are beneficial. The overall performance ranking from best to least is

150

as follows: iIECapSA, ECapSA, CSA, iECSA, ECSA, and CapSA. This ranking reflects the
effectiveness of the iterative and adaptive improvements in iECapSA.

The convergence curves in Figure 4.22 depict the decrease in MSE of each algorithm over
iterations and highlight their learning and optimization process. Overall, the convergence
curves reinforce the quantitative findings previously discussed in Table 4.24. iECapSA algo-
rithm exhibits the fastest convergence speed and has the lowest error rates for most datasets.
The convergence behavior of iIECapSA indicates that its enhancements successfully expedite

the search towards optimal solutions.

Table 4.25: Testing classification accuracy for CSA and CapSA variants across biomedical

datasets

Table 4.26: Testing classification F1-score for CSA and CapSA variants across biomedical

Dataset Measure | CSA ECSA CapSA ECapSA iECSA iECapSA
Blood AVG 0.7512 0.7561 0.7563 0.7500 0.7527 0.7539
STD 0.0039 0.0064 0.0034 0.0044 0.0037 0.0065
BreastCancer | AVG 0.9725 09721 0.9689 09710 0.9727 0.9721
STD 0.0029 0.0046 0.0090 0.0053 0.0048 0.0044
Diabetes AVG 0.7263 0.6777 0.6966 0.7363 0.6990 0.7462
STD 0.0143 0.0425 0.0291 0.0182 0.0242 0.0116
diagnosis_II | AVG 1.0000 0.9866 0.9573 1.0000 1.0000 1.0000
STD 0.0000 0.0407 0.0826 0.0000 0.0000 0.0000
Liver AVG 0.7000 0.6301 0.6339 0.7318 0.6614 0.7326
STD 0.0413 0.0390 0.0446 0.0304 0.0302 0.0237
Parkinsons AVG 0.8485 0.8194 0.8037 0.8351 0.8366 0.8418
STD 0.0147 0.0205 0.0288 0.0272 0.0272 0.0267
Vertebral AVG 0.8198 0.7910 0.7519 0.8401 0.8052 0.8571
STD 0.0181 0.0340 0.0477 0.0273 0.0356 0.0318
Mean Rank 2.79 4.64 5.00 3.36 3.21 2.00

datasets

Data Measure | CSA ECSA CapSA ECapSA iECSA iECapSA
Blood AVG 0.8565 0.8599 0.8600 0.8554 0.8576 0.8574
STD 0.0026 0.0042 0.0024 0.0026 0.0025 0.0034

BreastCancer | AVG 0.9790 0.9787 09763 09778 0.9792 0.9787
STD 0.0022 0.0035 0.0069 0.0041 0.0037 0.0034

Diabetes AVG 0.5469 0.4256 04633 0.5646 0.4861 0.5866
STD 0.0263 0.0942 0.0609 0.0290 0.0463 0.0203

diagnosis_II | AVG 1.0000 0.9897 0.9584 1.0000 1.0000 1.0000
STD 0.0000 0.0307 0.0845 0.0000 0.0000 0.0000

Liver AVG 0.6053 0.4079 04341 0.6626 0.5044 0.6674
STD 0.0587 0.1324 0.1375 0.0433 0.0792 0.0324

Parkinsons AVG 0.9083 0.8906 0.8819 0.8997 0.9004 0.9038
STD 0.0087 0.0126 0.0174 0.0164 0.0167 0.0159

Vertebral AVG 0.8770 0.8578 0.8323 0.8894 0.8666 0.9001
STD 0.0135 0.0247 0.0302 0.0191 0.0261 0.0226

Mean Rank 2.79 4.64 5.00 3.36 3.07 2.14

The testing classification results for various biomedical datasets are reported in Tables

151

_ -1 — CSA
1725x107% — csa 10 fosa
17x 1071 —T Ecsa —— CapsA
CapSA —— ECapSA
1675 x 1071 icé"s‘f“ —— iECSA
— .
1.65x 107! —— IECapSA ECapsA
w]
2 1.625x10! = 6x1072
1.6 x 1071
1,575 x 1071 I ———
‘\
1.55x 107 4% 102
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Iterations Iterations
(a) Blood (b) BreastCancer
—— CSA
—— CSA —— ECSA
22x107? 10-1 4
—— ECSA —— CapSA
21x1071 —T~ CapSA —— ECapSA
—— EcapsA —— iECSA
2x10-1 —— {ECSA —— iECapSA
—— iECapSA
1.9x 107!]
g g
=
1.8x10! —\\\\
17x 1071 107
1.6x 107!
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Iterations Iterations
(¢) Diabetes (d) diagnosis_II
—— CSA - — CsA
o —— ECSA 24%10 —— ECsA
2:4x10 —— CapSA 22x10°! —— CapSA
—— ECapSA - —— ECapSA
23x10-1 —— iECSA 2% 10 —— iECSA
: 2 —— iECapSA 1.8x10-1 —— iECapSA
N "Li .
%] %)
=22x107! = 1.6x107!
1.4x107!
2.1x 107
12x1071
2x 1071
0 25 50 75 100 125 150 175 200 25 50 75 100 125 150 175 200
Iterations Iterations
(e) Liver (f) Parkinsons
—— CSA
-
2x 10 I ecsa
1.9x107* —— CapSA
—— ECapSA
18x10-! —— iECSA
—— iECapSA
w 1.7x107
I
=
1.6x107! _
15x107!
1.4x107!
0 25 50 75 100 125 150 175 200
Iterations

(g) Vertebral

Figure 4.22: MSE convergence curves for basic and enhanced CSA and CapSA models

across various biomedical datasets

152

4.25 and 4.26. It is clear that the proposed iECapSA algorithm surpasses other algorithms
in three datasets (Diabetes, Liver, and Vertebral). In most datasets, such as ’Blood’, ’Breast-
Cancer’, and ’Parkinsons’, iECapSA has shown competitive or superior accuracy and F1-
score. Remarkably, for the dataset *diagnosis_II’, all model variants have achieved perfect
or near-perfect accuracy and F1 scores, indicating that these datasets might be less chal-
lenging or that the models are well-suited to their structure. Moreover, CSA again performs
well, ranking second overall, which suggests that the foundational strategies of the algorithm
are still effective for these tasks. Specifically, the enhanced variants, iECSA and ECSA, do
not consistently outperform their basic counterpart, emphasizing the importance of problem-
specific tuning. Nevertheless, the improvements in CapSA have yielded positive results, as
ECapSA has outperformed the original CapSA in terms of performance rankings.

In summary, the findings collectively demonstrate that the iIECapSA model is reliable and
efficient for classifying biomedical data. It has consistent and robust optimization capabil-
ities. However, the varying outcomes across different algorithm designs and datasets high-
light the challenge of achieving consistent improvements. While enhancements in ECSA do
not always result in better performance, strategic improvements, as seen in iECapSA, can

effectively reduce prediction errors and enhance the model’s accuracy.

4.6.1.9 Comparison with Stochastic Gradient Descent Solvers

Table 4.27: Classification performance comparison between stochastic gradient descent
solvers and metaheuristic models across biomedical datasets

Accuracy F1-score
Stochastic Gradient Descent MHs Stochastic Gradient Descent MHs
Dataset Measure |\ Gom SGD CSA iECapSA | MU ™A dam SGD CSA iECapSA
Blood AVG 0.7596 0.7608 0.7512 0.7539 || AVG 0.8627 0.8641 0.8565 0.8574
STD 0.0026 0.0000 0.0039 0.0065 | STD 0.0021 0.0001 0.0026 0.0034
BreastCancer AVG 0.9649 0.9429 0.9725 09721 AVG 0.9737 0.9582 0.9790 0.9787
STD 0.0044 0.0116 0.0029 0.0044 | STD 0.0032 0.0081 0.0022 0.0034
Diabetes AVG 0.6947 0.6357 0.7263 0.7462 || AVG 0.5178 N/A 0.5469 0.5866
STD 0.0245 0.0071 0.0143 0.0116 || STD 0.0596 N/A 0.0263 0.0203
diagnosis_II AVG 0.8427 0.7183 1.0000 1.0000 | AVG 0.8347 0.7481 1.0000 1.0000
STD 0.1289 0.1729 0.0000 0.0000 || STD 0.1492 0.1532 0.0000 0.0000
Liver AVG 0.6055 0.5669 0.7000 0.7326 || AVG N/A N/A 0.6053 0.6674
STD 0.0342 0.0148 0.0413 0.0237 || STD N/A N/A 0.0587 0.0324
Parkinsons AVG 0.8216 0.7612 0.8485 0.8418 || AVG 0.8917 0.8644 0.9083 0.9038
STD 0.0197 0.0000 0.0147 0.0267 | STD 0.0115 0.0000 0.0087 0.0159
Vertebral AVG 0.5448 0.4481 0.8198 0.8571 || AVG N/A N/A 0.8770 0.9001
STD 0.1814 0.1830 0.0181 0.0318 || STD N/A N/A 0.0135 0.0226

Table 4.27 compares the performance of traditional gradient descent solvers, Adam and

153

SGD, with the metaheuristic models CSA and iIECapSA across biomedical datasets in terms
of accuracy and Fl-score. For certain datasets, the F1-score is reported as "N/A’ (not ap-
plicable) for Adam and SGD, typically due to zero precision or recall in the classification
outcomes. This indicates a failure to correctly identify any positive cases. Consequently,
this problem confirms the power of metaheuristic models, because they consistently provide
valid F1 scores across all datasets.

Overall, metaheuristic models, especially iIECapSA, often achieve comparable or supe-
rior classification outcomes compared to traditional gradient descent methods. These models
are good at finding the best weights and biases that reduce errors in classification and thus
produce better classification quality. Metaheuristic models can fine-tune the parameters of
machine learning models, making them useful optimization tools in solving complex classi-

fication tasks.

4.6.1.10 Performance Validation Against State-of-the-Art algorithms

In this section, we evaluate the performance of iIECSA and iECapSA against a diverse set
of 11 widely recognized MHs, namely BAT, DE, JAYA, PSO, SSA, WOA, SCA, GWO,
HHO, AOA, and AO. Table 4.28 presents a comparison of MSE values for these algo-
rithms. Notably, GWO and PSO generally perform well, often recording the lowest MSE
values in datasets like "BreastCancer," "Diabetes,"” and "Vertebral". Their effectiveness is
underscored by their low mean ranks of 2.29 and 2.57, respectively. This indicates that
these algorithms have superior performance in optimizing neural networks across the evalu-
ated datasets. Meanwhile, iIECapSA also show competitive performance, particularly in the
"BreastCancer" and "Vertebral" datasets. Overall, each algorithm exhibits varying levels of
effectiveness across different datasets. The algorithms GWO, PSO, BAT, SSA, and iCapSA
are recognized for their exceptional performance, as seen by their top positions in the mean
rank index.

The average accuracy results for 20 runs of the compared algorithms are presented in
Table 4.29. Based on the results, iECapSA demonstrates superior performance compared

to DE, JAYA, WOA, SCA, HHO, AOA, AO, and iECSA algorithms across most datasets.

154

Table 4.28: Average MSE results of the proposed iECSA and iECapSA against
state-of-the-art Algorithms for neural network optimization

Dataset BAT DE JAYA PSO SSA WOA SCA GWO HHO AOA AO iCapSA iECSA
Blood 1.541E-01 1.571E-01 1.561E-01 1.535E-01 1.545E-01 1.573E-01 1.573E-01 1.545E-01 1.558E-01 1.697E-01 1.648E-01 1.541E-01 1.560E-01
BreastCancer | 3.587E-02 5.011E-02 4.911E-02 3.584E-02 3.675E-02 4.652E-02 4.786E-02 3.461E-02 4.034E-02 7.703E-02 4.347E-02 3.897E-02 4.123E-02
Diabetes 1.535E-01 1.689E-01 1.672E-01 1.532E-01 1.531E-01 1.708E-01 1.750E-01 1.531E-01 1.593E-01 2.155E-01 2.000E-01 1.563E-01 1.765E-01
diagnosis_II | 1.696E-03 2.730E-02 2.310E-02 3.274E-03 3.452E-03 3.410E-02 3.139E-02 2.862E-03 7.263E-03 1.066E-01 9.055E-02 4.511E-03 1.855E-02
Liver 2.023E-01 2.138E-01 2.106E-01 1.916E-01 2.010E-01 2.204E-01 2.184E-01 2.008E-01 2.126E-01 2.389E-01 2.359E-01 2.008E-01 2.225E-01
Parkinsons 9.281E-02 2.100E-01 2.070E-01 1.468E-01 1.026E-01 1.554E-01 1.675E-01 9.085E-02 1.095E-01 1.520E-01 1.612E-01 1.122E-01 1.144E-01
Vertebral 1.357E-01 1.501E-01 1.436E-01 1.299E-01 1.351E-01 1.544E-01 1.533E-01 1.357E-01 1.442E-01 1.893E-01 1.836E-01 1.372E-01 1.561E-01
Mean Rank 3.00 9.57 8.29 2.57 3.29 9.86 9.86 2.29 6.00 12.29 11.14 4.29 8.57

In addition, iECapSA demonstrates a perfect accuracy of 1.00 for Diagnosis-1I, matching
the results of BAT, JAYA, PSO, SSA, GWO, HHO, and iECSA. To summarize, iECapSA
achieved a fourth-place ranking, demonstrating its competitive performance relative to the

top algorithms.

Table 4.29: Accuracy results of the proposed iECSA and iECapSA against state-of-the-art
Algorithms for neural network optimization

Dataset BAT DE JAYA PSO SSA WOA SCA GWO HHO AOA AO iCapSA iECSA
Blood 0.7529 0.7549 0.7551 0.7575 0.7502 0.7559 0.7512 0.7500 0.7529 0.7594 0.7578 0.7539 0.7527
BreastCancer | 0.9761 0.9603 0.9599 0.9714 0.9725 0.9681 0.9624 0.9779 0.9727 0.9139 09786 0.9721 0.9727
Diabetes 0.7469 0.7275 0.7349 0.7506 0.7525 0.7135 0.7160 0.7504 0.7368 0.6441 0.6729 0.7462 0.6990
diagnosis_II | 1.0000 0.9963 1.0000 1.0000 1.0000 0.9817 0.9829 1.0000 1.0000 0.7732 0.9073 1.0000 1.0000
Liver 0.7424 0.6911 0.6953 0.7508 0.7538 0.6547 0.6648 0.7534 0.7042 0.5780 0.5881 0.7326 0.6614
Parkinsons 0.8590 0.7224 0.7276 0.7843 0.8515 0.7940 0.7612 0.8716 0.8463 0.7784 0.7739 0.8418 0.8366
Vertebral 0.8627 0.8104 0.8283 0.8656 0.8679 0.8052 0.8127 0.8698 0.8387 0.7208 0.7458 0.8571 0.8052
Mean Rank 4.29 9.14 7.79 4.50 4.21 8.93 9.71 3.79 5.64 10.71 8.71 5.50 8.07

4.6.2 Experimental Results: Multilevel Image Segmentation

Image segmentation is the process of partitioning an image into multiple image segments,
also known as image regions or objects, based on various criteria such as gray level values,
color, shape, or textures [244, 245]. More precisely, image segmentation is assigning a label
to each pixel in an image so that pixels with the same label share specific properties. In
computer vision applications such as medical imaging, geographical imaging, autonomous
recognition, robotic vision, and many others, image segmentation is considered the essential
process for analyzing and interpreting the captured image [244, 246, 247]. For instance,
medical imaging approaches are vital in diagnosing complex diseases and in the patient’s
healthcare. They help doctors diagnose, treat, and detect life-threatening diseases early.
Much detailed information can be extracted from chest CT images; however, manual pro-

cessing of these images is inaccurate. Therefore, image segmentation has become one of the

155

critical stages for processing medical images, and it has been widely employed in several
medical applications [7].

Most image segmentation approaches are based on similarity and discontinuity, two
critical features of intensity values. The similarity technique, which relies on similarity
among image objects with pre-determined criteria for partitioning, is widely employed [244].
Among the various similarity-based techniques, the thresholding technique stands out as the
most favorable choice due to its accuracy, simplicity, and robustness [248]. A threshold-
based segmentation technique subdivides an image into smaller segments by determining
their boundaries using at least one gray-level value. Hence, Multi-level thresholding (MLT)
will find multiple gray-level threshold values to differentiate the objects of interest from the
image’s background.

Two widely regarded image thresholding methods are Otsu’s approach, which utilizes
the concept of between-class variance [249], and Kapur’s approach, which is based on the
principle of entropy [250]. These methods are considered among the top choices for image
thresholding techniques. They are used to identify the best thresholds for dividing the region
of gray-level values in an image, depending on some pre-defined criteria. However, both
exploit an exhaustive search algorithmic paradigm to optimize the objective function, and
thus the computational time grows exponentially with the number of threshold values. For
this reason, they can not be used to resolve MLT problems [244]. Meta-heuristic algorithms

have been leveraged in MLT, which is considered an NP-hard problem [251, 252].

4.6.2.1 Problem Formulation

The mathematical foundation of MLT is crucial for segmenting grayscale images into dis-
tinct classes. For an image /, the number of classes is k+ 1, where & thresholds are needed to
divide the image into multiple, non-overlapping segments. This problem can be mathemati-

cally formulated as in Eq. (4.17).

156

Co={I(x,y) eX|0<I(x,y)<t;—1}

Ci={x,y)eX | n<Ixy <tn—-1

1={I(xy)€X |t <I(xy) <tr—1} “4.17)
Ci={I(x,y)eX|t; <I(x,y) <tiy1—1}

Con={I(x,y) €X |t <I(x,y) <N-—1}

where C; is the i class of the image I, t; denotes the threshold value for i € 1, 2, 3,

k, k is the total number of distinct threshold values, L the maximum intensity value, and X

represents the set of all pixel coordinates (x,y) within the grayscale image I such that each

pixel at location (x,y) in the image I has an intensity value.

To effectively handle the challenge of MLT in image segmentation using metaheuristic

techniques, it is essential to redefine MLT as an optimization problem. This first step involves

formulating the solution representation and the objective function. Ultimately, the main

objective of this optimization task is to identify a set of k optimal threshold values that

achieve the desired segmentation criteria.

* Solution Representation: To solve the MLT problem, we represent the solution with
a vector of integer values, which serves as the threshold levels for segmenting the

grayscale image. In particular, the solution vector is defined as:

TZ[ll,tz,...,tk] (4.18)

where each #; is a threshold value within the range of [0, L-1], and k& is the total number

of thresholds needed to segment the image into k + 1 classes.

Objective Function (Kapur’s Entropy): Kapur’s Entropy method is a well-established
technique for image segmentation. It is particularly effective in determining the ideal
threshold values for segmenting an image into multiple levels [253]. This technique,
introduced by Kapur [253], leverages the concept of entropy from information theory
to generate a statistical variety score based on the intensity levels of an input image.
Entropy-based thresholding is reliable because the thresholds that are chosen do not

depend on small changes in the image’s pixel intensities. Instead, they are based on

157

the overall and objective quality of the image histogram [250]. The cross-entropy-
based objective function has recently shown promising results for the segmentation
tasks in different domains [254, 255, 256]. So, the entropy-based thresholding method
is chosen to solve the COVID-19 CT image segmentation problem in this thesis. It is
therefore used as an objective function to assess the fitness of the generated solutions
(i.e., threshold values) in the proposed cooperative optimization model. The mathe-
matical representation of this method is outlined as follows:
Given an image histogram A(i) for intensity levels i = 0,1,...,L — 1. h(i) represents
the observed grey-level frequencies. The probability of each intensity level i is given
by:

pliy = "0 @.19)

where N is the total number of pixels in the image and is defined as:

L—1
N =Y hi (4.20)
i=0

For multilevel segmentation, we seek to find k thresholds 71,1, ..., that divide the
histogram into k + 1 segments. The probability of each segment w; defined by the

thresholds can be calculated as follows:
wj= Y p() 4.21)

where j =1,2,...;k+1,tp=—1andf, =L—1.

The entropy of each segment is calculated using the probabilities within that segment:

Hj=— i Py, (ﬁ) (4.22)

l=l‘J71+l a)] a)J

The total entropy for the given thresholds is the sum of the entropies of all segments:

H(T)1=) Hj (4.23)

158

Accordingly, the formula given in Eq. (4.23) is employed as an objective function.

4.6.2.2 Cooperative Island-based Optimization Model for MLT Segmentation

Figure 4.23 demonstrates the optimization flowchart, providing a clear outline of the exhaus-
tive steps involved in successfully implementing the cooperative island-based optimization
model forMLT image segmentation. This tailored approach is specifically designed for CT
scan COVID-19 images and is thoroughly explained in the following steps, according to the

flowchart.

Start — T
Initialize common and internal

parameters of involved MHs

Generate the initial population
(threshold values) Randomly

v

Set objective function (Otsu’s

% Q.g method Eq. 4.21)
=== ’ > ¢

Generate the image histogram Apply St'ep's of'lsland-based
Omptimization Model

Load COV-19 CT image

v

Geturn the optimal thresholds XD

Segmented |
- image

Calculate the probability End

distribution

Figure 4.23: Flowchart of the multilevel image segmentation framework using cooperative
island-based optimization model

1. Loading the CT scan image: The first step involves loading the target CT scan
COVID-19 image, which serves as the foundation for the subsequent segmentation

steps.

2. Calculating the histogram: After loading the image, the histogram is calculated. This

step is essential for gaining insight into the distribution of pixel intensities within the

159

image, serving as a valuable guide during the segmentation process.

. Calculating probability distribution: Once the histogram has been calculated, the
next step is to determine the probability distribution of the pixel intensities. This is
crucial for Otsu’s objective function, which uses probability distributions to determine

the most effective thresholding values.

. Initializing parameters: Before beginning the optimization process, multiple param-
eters must be set. These include standard parameters such as the number of iterations,
population size N, the dimension of the problem (number of thresholds), and migra-
tion parameters. Additionally, internal parameters unique to cooperative metaheuristic

algorithms, such as ECSA, are also established.

. Generation of the initial population: Once the parameters are established, a random
initial population is created. Each member of this population represents a vector of

threshold values, which are viable candidates for image segmentation.

. Optimization Process: Utilizing a collaborative island-based approach, the optimiza-
tion process 1s initiated (as depicted in Section 3.1.5). This phase involves fine-tuning
of threshold values through iterative refinement, resulting in improved segmentation

performance.

. Implementation of optimal thresholds: After completing the optimization process,
the best threshold values are determined and implemented on the original image. This

final action produces the segmented image, achieving the desired outcome.

4.6.2.3 Experimental Setup

The experimental configuration for segmenting COVID-19 CT scan images was carefully

developed to address the challenges inherent in real-world medical imaging. To assess seg-

mentation quality and algorithm performance effectively, we implemented multiple thresh-

olds: 4, 6, 8, and 10. These thresholds, recommended by prior studies, were selected to

manage the complexity and variability of the scans while preventing under-segmentation

and over-segmentation issues.

160

To guarantee fair and objective algorithm comparisons, all experiments were conducted
under standardized conditions. Common parameters, including a population size of 30 and
a maximum of 500 iterations (total of 15,000 evaluations), were uniformly applied across
all optimizers for each image. This standardization enables a consistent and fair evaluation
platform to analyze the effectiveness of each optimizer. The internal parameters for each
algorithm were carefully chosen based on default values suggested in the literature, ensuring
optimal operating conditions for a fair comparison. The search space for the segmentation
problem was clearly defined with lower and upper bounds set at 1 and 256, respectively, to
cover the full range of pixel intensity values typically observed in CT images.

Given the stochastic nature of the algorithms under review, each was tested 20 times on
each image at every threshold level. Statistical tests, including the Wilcoxon rank-sum and
Friedman mean rank tests, were employed to validate the results and confirm the superiority
of the proposed methods. The outcomes reported reflect the average of all runs, with the best

results highlighted in boldface.

4.6.2.4 COVID-19 CT images dataset

Computed tomography (CT) has emerged as a valuable tool for diagnosing Coronavirus
Disease 2019 (COVID-19) patients, particularly during the COVID-19 outbreak. To eval-
uate the proposed methodology in this study, open-sourced datasets were employed from
these references: [221, 222]. By utilizing this dataset, the study aims to test and prove
the effectiveness of advanced MLT 1image segmentation techniques to enhance the diagnosis
of COVID-19, thus improving medical diagnostics, especially during a global health crisis
[257]. The CT COVID-19 dataset consists of 349 CT scans with clinical COVID-19 find-
ings from 216 patients. An experienced radiologist who has been identifying and treating
COVID-19 patients ever since the pandemic’s emergence attests to the usefulness of this
dataset. The COVID-19 images were collected from individuals of both sexes, aged 40 to
84. In this paper, ten images for ten distinct patients are selected from this dataset to assess
the performance of the proposed methods. The chosen test images are named COVID-CT],

COVID-CT2,..., and COVID-CT10. Figure 4.24 demonstrates these images and the corre-

161

sponding histograms. The histograms, which represent the visualization of the pixel intensity
distribution across the images, provide further information about the textural and structural

features of the COVID-19-affected lung areas.

(a) COVID-CT1 (b) COVID-CT2 (c) COVID-CT3 (d) COVID-CT4

000 5000 4500
4500 4000
5000
4000 500
500
4000 3000
000
2500
3000 2500
2000
2000
2000 1500
1500
1000 Togo.
1000
%0 500
o o 0
o 50 100 150 200 250) 50 100 150 20 250 o 5 100 150 200 250

(e) Histogram of (a) (f) Histogram of (b) (g) Histogram of (c) (h) Histogram of (d)

)

(1) COVID-CT5 (]) COVID-CT6 (k) COVID-CT7 () COVID-CT8

3000

;;;;;;;

(m) Histogram of (i) (m) Histogram of (j) (o) Histogram of (k) (p) H1stogram of (1)

000

000

so00

an

w00

.L‘,Y/ 2000
\ 1000

2 0o

(q) COVID-CT9 (r) COVID-CT10 (s) Histogram of (q) (t) Histogram of (r)

Figure 4.24: Set of tested COVID-19 CT images and their histograms

4.6.2.5 Image Segmentation Evaluation Metrics

For MLT segmentation, it is critical to examine the pixel classification’s accuracy by using

a quantitative measure of the quality of a segmented image. In this study, a popularly used

162

metric, namely Structural Similarity Index (SSIM) is employed to evaluate the quality of the

segmented images. SSIM is defined as follows:

* Structural Similarity Index (SSIM) The SSIM [258] is a perceptual metric that quan-
tifies image quality degradation caused by processing the reference image. This mea-
sure determines the similarity between the original and the segmented image. SSIM is

calculated using Eq. (4.24)

(Quruy, +c1)(2074,) +c2

SSIM =
(uf +uf +c1)(of +0f +c2)

(4.24)

where (;, W, denote the mean of intensity values of the original and the segmented
images, respectively, oy, oy, represent the standard deviations of I and I, oy, is the

covariance of I and I, ¢1 and ¢, are constants for the weak denominator stabilization.

4.6.2.6 Experimental Design for Comparative Analysis

To evaluate and compare the segmentation algorithms under study. The analysis is organized

into two experiments:

* Experiment 1: The first experiment assesses the basic and enhanced variants of the

CSA and CapSA models using multilevel thresholds (4, 6, 8, and 10 thresholds).

* Experiment 2: The best-performing models from the first experiment are then com-
pared against a selection of state-of-the-art algorithms and with similar studies from

existing literature using the same objective functions and datasets.

The following parts will present the experimental findings, which comprise quantitative

evaluations and visual illustrations.

163

4.6.2.7 Evaluation of Basic and Enhanced Variants of CSA and CapSA Across Multi-
ple Thresholds

The performance of CSA and CapSA algorithms and their enhanced versions across multiple
threshold levels are presented in Table 4.30. A higher cross-entropy value indicates superior
segmentation ability within this context. According to Table 4.30, it is clear that increasing
the number of thresholds results in an overall improvement in cross-entropy values for all
algorithmic variants. This improvement is expected since having more thresholds enables a
more detailed segmentation. This allows algorithms to fine-tune the segmentation boundaries
better. As a result, this leads to a higher cross-entropy value, which helps in achieving a
more accurate segmentation of complex images like COVID-19 CT scans. The graphical
representation in Figure 4.25 depicts how the cross entropy values change for iECapSA as
the number of thresholds increases for two different test images. The graph indicates that the
cross entropy generally increases with the increase in threshold levels for both images.
Moreover, it is observed that the algorithms perform similarly and produce competitive
results when only four thresholds are used. This could be due to the lower complexity of
segmentation tasks, which do not heavily strain the algorithms’ capabilities. However, when
the number of thresholds is increased, iECapSA stands out by showing consistently superior
performance. This suggests that iIECapSA is very good at handling more complex segmenta-
tion tasks and can use the additional thresholds to enhance the segmentation outcome. As per
mean rank across all tested images and thresholds, iIECapSA outperforms the other variants

with the highest mean rank, followed by ECapSA and CSA, respectively.

164

9 4 8t I'¢ I I'y 9 4 S € I L€ Juey uedy
80+HASTSL66'Y SO+H6IVL66Y 80+HETSL66Y SO+AS6VLE6'Y 80+HISEL66'Y SO+ACISLO6T | SOFASLIL66'Y SO+HES0L66T SO+HILIL66Y 80+HISIL66'Y 80+HCTOL66Y 80+HSYIL66T 01LD-AIAOD
SO+ASICTET'E SO+HALLTTEI'S BO+HISETEI'S SO+ATSETEI'S 80+HIGITEI'E SO+AESETEI'E | SO+HAG90ZET'S SO+ALSGIET'E 80+HS90TEI'E 8O+HATSOTEI'S 80+HLIGIEI'E 80+H6E0TET'E 61D-AIAOD
LO+H06S806'T LO+A9IY806'T LOFI6LSS06'T LO+HIPSS06'T LO+HSTES06'T LO+HOLSS06'T | LO+ATOT806'T LO+HO60806' T LO+HAS6I806°T LO+HG9I806'T LO+HSTO806'T LO+IS6I806'T 8LD-AIAOD
S0+H6LOSITT 80+H09081TT 80+ASLOSIT T 80+HS9081T'T 8O+HESOSITT SO+HSLOSITT | 8O+ATEOSTTT SO+HASIOSIT T SO+HOCOSIT T SO+HOTOSITT SO+HITOSITT 80+HOLO8ITT LLD-AIAOD
80+H060ST6'Y S0+AYI6YI6T 80+ASLOSIEY 80+HEE0SI6Y 80+AYTEVI6Y SO+HSSOSI6Y | 8O+HALTLYI6Y SO+HPTOVI6 T SO+A6ILYI6T SO+HSOLYI6Y SO+HSYSYI6Y 80+H80LYI6T 9LD-AIAOD
S0+HASEI6LS Y SO+ACIS6L8 T S0+ACCI6L8 Y SO+HISSOLS Y SO+HELYOLS Y SO+HOTI6LS ¥ | 8OHAELY6LS'Y SO+HV6L6L8 Y SO+ACLY6LS T SO+HAPYY6LS Y SO+HSYE6LS Y SO+ATIV6L8 Y SLD-AIAOD
S0+ATCTTPLT SO+ATI9ITHL T 80+J0TTTYL'T 80+HC0TTHL'T SO+HI60TYL'T SO+H90TTYLT | 80+HA600THLT SO+HOYOIYL T SO+AS00THL T SO+HLE6IVLT SO+HOI6IVLT 80+I000THL'T vLD-AIAOD
S0+HCSTOSL'T 80+HTO008L'T 80+HISTOSL'T SO+AGITO8L T 80+H6T008L'T SO+APEIO8L'T | SO+HALT66LL'T SO+ICLS6LLT 80+HITO6LL'T 80+HII66LL'T 80+HOIS6LL'T SO+IETO6LL'T — €1D-AIAOD
SO+ATOS6ILT SO+HICHOILT 80+H00S6IL'T SO+AISYOILT S0+HSLEGIL'T SO+ALSFOILT | SO+APSTEIL'T SO+AYETOIL T 80+HESTOIL'T 8O+HLITOIL'T 80+H96I6IL'T SO+HIST6ILT TLD-AIAOD
SO+ATSTOLY' T SO+HASTTOLY T 80+HISTOLY T SO+AYITOLY' T 80+H9SIOLY T SO+ATLTOLY T | SOFAL600LY'T SO+ASHOOLY' T 80+H0600LY T 80+HILO0OLY T 80+HETOOLY' T 80+HL800LY'T 11D-AIAOD

vsdepgr VSOH! vsdeoq vsdeD vSod VSO vsdeodr VSOd! vsdeDd vsde) vSod VSO oFew 18],

01 = SPIOYSaIy] # § = SPOYSAIY L#

9 |4 8t S¢ I 9¢ sT'S €T S6'Y € 'l (a4 yuey ued
S0+ALIPI66'Y SO+ATIVI66Y 80+HLIP966t SO+ASIVIE6T 80+H98T966Y S0+ASSHIGC6T | SOHALE6Y66'Y SO+ALE6Y66'T S0+HLE6V66'Y 80+HLE6Y66'Y 80+HTE6V66y SO+ALE6Y66'Y 01LD-AIAOD
80+HITSIET'S SO+AIGYIECI'E 80+AITSIEI'ES 80+HITSIEI'S SO+HEHPICI'E SO+HO0SIEI'E | 8O+APPEOCT'S SO+HEYEOET'E SO+APPEOST'E SO+HPYEOCI'E SO+HOICOET'E SO+AIELOEI'E 6LD-AIAOD
LO+H6ESLO6'T LOFASO6YLO6'T LOFI6ESLO6'T LOFHSESLO6'T LO+HY6TLO6'T LO+HOESLO6'T | LO+ASISSO6'T LO+HPISSO6'T LO+ASISSO6'T LO+HTTSSO6'T LO+HOYSSO6'T LO+ASISSO6'T SLD-AIAOD
S0+HASPOLITT SO+ASC6LITT 8O+APP6LITT 80+HSH6LITT 80+H6TOLITT SO+HOVOLIT T | 8OHAGLLLITT SO+HGLLLITT SO+AGLLLITT SO+H6LLLITT SO+HLLLLITT SO+HGLLLITT — LLD-AIAOD
S0+HALIOVI6Y SO+A9IOPI6T S0+ALIOVIEY 80+H990FI6Y 80+HSO6EI6Y SO+HPSOVI6 T | 80+AILSTI6Y SO+HILSTI6Y SO+HILSTI6T SO+HILSTI6Y S0+H99STI6 Y SO+HILSTI6Y 9LD-AIAOD
80+HA8606L8' Y S0+ATSO6L8 Y 80+A8S06L8Y 80+HSS06L8Y 80+H6006L8Y SO+HLI06LS ¥ | 8O+AT6ESLEY SO+HATEESLS Y SO+AT6ESLSY SO+HT6ESLS Y SO+HOSE8LS Y 80+ATOESL8 Y SLD-AIAOD
S0+H909THL'T SO+HILSTYL'T 80+HO09THL'T SO+ASO9IYL T 80+HIOSTHL'T SO+HSO9TFLT | SO+ASILOPL'T SO+HSILOYL T SO+HSILOPLT 80+HS9LOYLT S0+HEILOVL'T SO+ASILOPL'Y +1LD-AIAOD
SO+ACOPOLL'T SO+ALSYOLL' T 80+HT6V6LL'T SOFATOVOLL T 80+HSIVELL'T SOATOVOLLT | SO+HASSSSLL'T SO+APSSSLL T SO0+HSSSSLLT 80+HSSSSLL'T 80+HLESSLL'T SO+ASSSSLL'T £1D-AIAOD
S0+AGISSILT SO+HOSSILT 80+H6988IL'T SO+ATECSSIL T S0+HEISSILT SO+HE9SSIL'T | SOFAIVGLIL'T SO+ATHOLILT SO+HIPGLILT SO+HIV6LILT S0+HITOLIL'T SO+AIPGLIL'T TLO-AIAOD
S0+HATPLE9Y'T S0+HOTLEOY' T 8O+HTHLE9F T 80+HOVLE9Y T 80+HIS969% T SO+HTYLE9Y | | 80+AS6889F'T S0+HS8889 | 80+AS6889H T S0+HS6889% T SO+HOLSS9Y T 80+AI8889F T 1LD-AIAOD

vsdeodr VSOd! vsdeoq vsde) vSod VSO vsdeodr VSOd! vsdeoq vsde) vsod VSO oFewn Js9],
9 = SPIOYSAYL# ¥ = SPIOYSAIY L#
Ol pue

‘g ‘9 ‘¢ S[PAQT pIoysaIy], 1 yYSde) pue ySD Jo siueLIBA pasueyuy pue diseq IoJ (Adonug sso1)) son[ep ssouin uedy 2anereduwo)) (¢4 dqeL

165

1.471000E+08 4.998500E+08
4.998000E+08
4.997500E+08
. 4.997000E+08

1.470000E+08 z
© 4.996500E+08
=l .
1.469500E+08 . 5 4.996000£+08
& 4.995500E+08
1.469000E+08 S, 095000E+08
1.468500E+08 4.994500E+08
4.994000E+08
1.468000E+08 4.993500E+08

nTh=4 nTh=6 nTh=8 nTh=10 nTh=4 nTh=6 nTh=8 nTh=10

1.470500E+08

Cross Entropy

(a) COVID-CT1 (b) COVID-CT10

Figure 4.25: Variation of cross entropy with increasing number of thresholds for iECapSA
on COVID-CT1 and COVID-CT?2 test images

The convergence curves in Figure 4.26 reveal that all algorithms, including basic and en-
hanced variants, improve the quality of segmentation as the number of iterations increases.
However, there are significant differences in their performance dynamics. Specifically, the
1IECapSA variant exhibits a faster convergence rate and achieves the segmentation task more
efficiently than others. In contrast, algorithms such as ECSA show signs of stagnation, sug-
gesting that further adjustments might be necessary to avoid premature convergence. These
trends align with the fitness values reported in Table 4.30, which show that iECapSA has
a superior mean rank and a robust optimization efficiency over the course of iterations. It
is worth noting that each individual algorithm demonstrates similar convergence patterns
across different datasets while exhibiting variations in cross-entropy values. This indicates
that the algorithms exhibit stability and consistent performance regardless of the specific
characteristics of the dataset. This is a desired property for MHs. The variation in cross-
entropy values likely stems from the inherent differences in the datasets themselves, such as
their complexity or underlying patterns.

In image processing, the SSIM is a useful metric to evaluate the quality of image seg-
mentation and is especially helpful for verifying the efficacy of image processing algorithms
by calculating the similarity between the original and segmented images. it can be noticed
from Table 4.31 that iECapSA exhibits strong performance with the highest SSIM scores
in several test images. This implies its effectiveness in preserving the structure and details
in segmented CT images. Furthermore, CSA and ECapSA, with mean ranks of 4.7 and

3.9, respectively underscores their capability to maintain structural details effectively. These

166

1.4703 x 108
1.47025 x 108
1.4702 x 108
1.47015 x 108
1.4701 x 108

1.47005 x 108

Cross Entropy

1.47 x 108
1.46995 x 108

1.4699 x 108

41_—’——
Y=

CSA
ECSA
CapSA
ECapSA
iECSA
iECapSA

0 100

(a) COVID-CT1

200 300
Iterations

400 500

1.7195 x 108

1.7194 x 108

1.7193 x 10®

Cross Entropy

1.7192 x 108

1.7191 x 108

. —

CSA
ECSA
CapSA
ECapSA
iECSA
iECapSA

(b) COVID-CT2

1.7422 x 108
1.7801 x 108
,__IF— 1.7421 x 108
x 178x 108 2
5 — CSA S
2 —— ECSA <
w w 8
P 1.7799 x 108 — CapsA a 1.742 x 10
g — g
—
1.7798 x 108 {ECapSA 1.7419 x 108
8
17797 x 10 1.7418 x 108
0 100 200 300 400 500
Iterations

(c) COVID-CT3

(d) COVID-CT4

0

100

200 300
Iterations

400

500

l_—r_r—

CSA
ECSA
CapSA
ECapSA
iECSA
iECapSA

0

100

200 300
Iterations

400

560

4.9151 x 108
4.8796 x 108
4.915 x 108
4.8795 x 108 (—I__F— 4.9149 x 108
> 2 8
§ 4794 x 108 — e g 4.9148x 10 — csa
& — ECsA & 4.9147 x 10° —— EcsA
a o —— CapSA] —— CapSA
S 48793x10 —— ECapSA S 4.9146 x 10° —— ECapSA
—— IECSA —— JECSA
4.8792 x 108 — iECapSA 4.9145 x 10° —— iECapSA
4.9144 x 108
4.8791 x 108
4.9143 x 108
0 100 200 300 400 500 0 100 200 300 400 500
Iterations Iterations
(e) COVID-CT5 (f) COVID-CT6
121808 x 108 1.9086 x 107
1.21806 x 10° ﬁ —
1.9084 x 107
1.21804 x 108
2 2
S 121802 x 10° — CSA |2 — CsA
E —— ECSA S 1.9082 x 107 —— ECSA
v 1218x10° —— CapSA P —— CapSA
8 121708 x 108 ECapsA S —— ECapSA
i x —— IECSA 1.908 x 107 —— IECSA
1.21796 x 108 — IiECapSA —— iECapSA
121794 x 10° 1.9078 x 107
0 100 200 300 400 500 0 100 200 300 400 500
Iterations Iterations

(g) COVID-CT7

(h) COVID-CTS

Figure 4.26: Convergence trends for CSA and CapSA variants on COVID-CT Images.

167

Table 4.31: Comparative evaluation of SSIM scores for CSA and CapSA variants on
COVID-CT images

Test image CSA ECSA CapSA ECapSA iECSA iECapSA
COVID-CT1 | 0.808734 0.786335 0.807495 0.812773 0.803975 0.813083
COVID-CT2 | 0.857784 0.842091 0.858374 0.861412 0.85496 0.861432
COVID-CT3 | 0.876263 0.863729 0.872113 0.875205 0.864948 0.875304
COVID-CT4 | 0.861498 0.843062 0.857002 0.86178 0.854459 0.862086
COVID-CTS5 | 0.615431 0.638566 0.600875 0.60608 0.62522 0.59583
COVID-CT6 | 0.788994 0.782565 0.784851 0.810561 0.780604 0.830072
COVID-CT7 | 0.751017 0.750461 0.736967 0.742592 0.744764 0.753414
COVID-CT8 | 0.889179 0.893008 0.884482 0.875263 0.887375 0.879141
COVID-CT9 | 0.789135 0.769693 0.788014 0.787414 0.782185 0.786181
COVID-CT10 | 0.781133 0.76084 0.764067 0.780881 0.777346 0.780337
Mean Rank 4.7 24 2.9 39 2.6 4.5

findings indicate that both basic and enhanced variants of the algorithms have their merits in
segmentation tasks, with enhanced versions like iECapSA providing notable improvements

in several cases.

4.6.2.8 Comparison with Similar Study in the Literature

Table 4.32: Performance Comparison of iECapSA with the Cooperative Island-Based
Model (CPGH) from literature [7].

) Cross Entropy SSIM
Testimage Fpa) iECapSA CPGH [7] iECapSA
COVID-CTI | 1.47028101E+08 1.47028118E+08 | 0.812919 0.813083
COVID-CT2 | 1.71950071E+08 1.71950075E+08 | 0.860808 0.861432
COVID-CT3 | 1.78015154E+08 1.78015175E+08 | 0.875046 0.875304
COVID-CT4 | 1.74222051E+08 1.74222079E+08 | 0.861654 0.862086
COVID-CTS | 4.87963312E+08 4.87963483E+08 | 0.601746 0.59583
COVID-CT6 | 4.91508567E+08 4.91509011E+08 | 0.821366 0.830072
COVID-CT7 | 1.21807905E+08 1.21807900E+08 | 0.753667 0.753414
COVID-CTS | 1.90858934E+07 1.90858955E+07 | 0.882086 0.879141
COVID-CT9 | 3.13236302E+08 3.13236531E+08 | 0.787793 0.786181
COVID-CTI0 | 4.9975244TE+08 4.99752482E+08 | 0.779823 0.780337

In this part, the effectiveness of the proposed iECapSA model is compared with a con-
temporary island-based cooperative model known as CPGH, as reported in a recent study
by Sabha et al. [7]. To ensure a fair and unbiased comparison, the researcher used the
same parameters and settings for both models, including a population size and maximum
iterations of 30 and 500, respectively, as well as the same objective function. This consistent

experimental framework allows for an objective evaluation of the strengths of each approach.

Table 4.32 presents the comparative evaluation of cross-entropy and SSIM metrics for the

168

1iECapSA and CPGH models on the COVID-CT Image Dataset. The results reveal that both
methods perform well in multilevel thresholding tasks. However, iECapSA shows slightly
better results in the majority of test cases. For cross-entropy results, iECapSA outperforms
the CPGH model in 90% of the test cases. For the SSIM metric, which reflects the structural
accuracy of segmentation, iECapSA surpasses CPGH in 60% of the cases. These results
highlight the effectiveness of iECapSA in providing high-quality segmentation results that

match, and often exceed, contemporary models in the literature.

4.6.3 Experimental Results: Software Reliability Growth Models Estimation

SRGMs are essential in software engineering because they offer a mathematical method for
predicting reliability and estimating the number of defects or failures that may occur through-
out its life cycle [259]. Because these models predict probable software failures, they are use-
ful for controlling risk, scheduling maintenance tasks, and effectively allocating resources.
Through the analysis of historical failure data, SRGMs contribute to the understanding and
enhancement of the software development process. This makes reliability prediction a cru-
cial component of software quality assurance and testing procedures [260, 261].

In the realm of complex software systems, reliability is of utmost significance. This is
where the utilization of SRGMs becomes critical. These models play a vital role in decision-
making regarding software release dates and also offer support even after the software is
released by providing valuable insights into the debugging process and the overall failure
of the system. In the world of research, a multitude of models have been introduced to
forecast the reliability of software systems. Some renowned ones include the exponential
Goel-Okumoto model [262], the power model known as the Non-Homogeneous Poisson
Process [263], and the delayed S-shaped model [264].

The success of traditional models heavily relies on key parameters that depict various
facets of a program’s dependability, including the projected quantity of errors and the speed
at which errors are identified. It is imperative to determine these parameters correctly, as
they significantly impact the model’s precision in predicting software reliability [265]. To

this end, techniques such as numerical estimation, maximum likelihood estimation (MLE),

169

and least square estimation (LSE) are commonly utilized, as outlined by Lyu in 1996 [266].
However, these techniques come with their limitations. For example, they often assume
that the model functions smoothly and its mathematical expressions can be differentiated
[267]. However, when a model is complex or has many parameters, these methods struggle,
especially with nonlinear functions or when trying to hone in on the best solution without
getting stuck in less optimal ones. These challenges highlight the need for better methods
to estimate the parameters of software reliability models. Currently, MHs show great po-
tential in enhancing software reliability predictions [268, 269, 270]. By incorporating these
algorithms, we can enhance the precision of reliability forecasts, enabling more informed

decision-making in software development and maintenance.

4.6.3.1 MHs-based Optimization of SRGMs: Problem Formulation

To achieve optimal results with SRGMs, it is crucial to fine-tune the model parameters to ac-
curately capture patterns observed in past software failure data. This requires the formulation
of an effective optimization problem, which can be addressed using MHs. This section will
present the formulation of this optimization problem, paying close attention to the selection

of solution representation, fitness function, and model selection methods.

* Solution Representation: When it comes to optimizing SRGM, a common approach
is to represent the solution as a vector, where the model parameters are transformed
into a suitable form that can be optimized using metaheuristic algorithms. For exam-
ple, a vector such as [a,b,c] can effectively capture the three parameters a, b, and ¢
for a particular model. It’s worth noting that these parameters are constrained by both
theoretical limitations and practical considerations, and can vary within established

ranges.

* Fitness Function: When it comes to optimizing SRGM, the fitness function plays a
crucial role in evaluating the effectiveness of a set of model parameters in predicting
historical software failures. Its main goal is to minimize the disparity between the
failure rates predicted by the tested SRGM and the actual observed failure data. This

objective can be quantified using statistical measures such as the Mean Squared Error

170

(MSE) or the Negative Log-Likelihood (NLL), where a lower value indicates a better
fit of the model to the data. In this study, the author employed MSE in Eq. 4.25 as a
fitness function.

MSE =~ Y (5 —) (4.25)

S| =
1=

=1

where y; represents the observed failures at time ¢, and y; denotes the failures predicted

by the SRGM.

4.6.3.2 Employed SRGMs

Choosing the appropriate SRGM is of extreme significance, as each model operates on dis-
tinct assumptions regarding the occurrence and resolution of software failures. The decision
typically relies on specific characteristics of the software, the development process, and the
existing data on failures. However, one of the main objectives of this study is to analyze
the performance of well-developed MHs in optimizing SRGMs. For this purpose, the author
utilized three models that are commonly used in the literature. These models include the
exponential Goel-Okumoto model, power model, and the delayed S-shaped model (see Fig.

4.27)

1. Exponential Goel-Okumoto Model: This model is one of the earliest and most
straightforward SRGMs, which assumes that the failure detection rate decreases ex-
ponentially with time. The cumulative number of detected failures pi(z) at time ¢ is
given by:

w(t)=a(l—e™) (4.26)

where a is the total number of faults detected by the model and b is the fault detection

rate.

2. Power Model: Also known as the Non-Homogeneous Poisson Process (NHPP) model,
the power model represents the cumulative number of failures as a function of time

with a power-law distribution. The equation is as follows:

w(t) = a® (4.27)

171

where a and b are parameters of the model, representing the initial fault detection rate

and the growth parameter, respectively.

3. Delayed S-shaped Model: The Delayed S-shaped model assumes that the rate of
failure detection follows a curve that is more delayed compared to other models. This
description is appropriate for explaining the software failure process during testing
phases, where the detection of failures begins slowly, then speeds up, and eventually

slows down. The mathematical representation can be expressed as follows:

w(r)=a(l—(1+bt)e ™) (4.28)

where a and b are model parameters similar to those in the Goel-Okumoto model but

fitted to produce the S-shaped curve.

)) 80 100 o 20 o

(a) Exponential Model (b) Power Model (c) Delayed S-shaped Model

Figure 4.27: Graphical representation of the selected SRGMs

The models were chosen to thoroughly evaluate the optimization potential of the pro-
posed algorithms in different SRGM formulations, considering their diverse assumptions
about software failure detection. This aligns with the study’s objectives by demonstrating
that the developed models have the ability to effectively forecast software reliability by iden-
tifying the optimal values for parameters a and b for each model. This will provide us with

valuable insights into the effectiveness of SRGMs in real-world scenarios.

172

start Set the estimated model parameters
M(t) = 100(1 — e %%

A 4 Y

ara?nztt:en:slzlje'sit:e {E:?sellan o Predict number of failures on the
P 9 test dataset

based optimization model

Load Software Failure Dataset

v

Split Data into train and test
datasets

Y

Y

Evaluate the MSE

A

y
Select the SRGM function Return the best solution X=(100,
M(D) = a(l — &™) 00.005) A 4
l [End

Figure 4.28: Overall approach of SRGM optimization

4.6.3.3 Optimization Framework for SRGMs
4.6.3.4 Experimental Setup

To ensure a fair comparison among the various algorithms investigated, this study uses stan-
dardized testing conditions. The population size for common parameters is fixed at 30, and
the maximum number of iterations is limited to 50. This setup was determined after exten-
sive preliminary testing, which revealed that 50 iterations were sufficient to achieve excellent
outcomes. This balance between computational efficiency and thorough exploration of the
solution space enables the identification of optimal or near-optimal solutions. Additionally,
the internal parameters for all algorithms were carefully selected based on recommended
settings and best practices outlined in prior research.

It is crucial to define the minimum and maximum values for parameters a (scaling factor)
and b (rate parameter) when estimating statistical models. The selection of the parameter
range can significantly impact the effectiveness of the search technique. By configuring
parameters with a too-wide range, the search algorithms may inefficiently explore regions
that are not feasible. Conversely, if the boundaries are excessively restrictive, there is a risk of
missing the global optimum. In exponential and delayed S-shaped models, for instance, the
parameter a, which reflects the total expected number of failures, should be flexible enough

to cover the entire potential range of outcomes suggested by empirical data. Therefore, the

173

range for the parameter a (and other model parameters) can vary depending on the dataset
used for modeling. Consequently, after extensive preliminary analysis, iterative refinement,
and considering existing literature, the range for a is set between 0 and twice the total number
of observed failures in each dataset. The range for b is limited from O to 1 to accommodate
variability in failure detection rates. In the power model, the values of a and b are limited
within the ranges of [0, 50] and [0, 1], respectively. Table 4.33 summarizes the parameter

ranges set for each SRGM.

Table 4.33: Parameter ranges for SRGM estimation

Model Type Parameter c Range | Parameter b Range
Exponential & Delayed S-Shaped | [0, 2 x (Total Failures)] [0, 1]
Power Model [0, 50] [0, 1]

Due to the stochastic nature of metaheuristic techniques, each experiment is repeated
30 independent times to ensure accurate and reliable results. Statistical tests, such as the
Friedman and Wilcoxon rank-sum tests, are used to evaluate the significance of performance

differences and provide a solid basis for comparative analysis.

4.6.3.5 Real Datasets

Our study examines the effectiveness of proposed optimization methods for SRGMs using
ten real datasets, labeled as DS1 through DS7. Notably, one of the datasets, DS2, includes
four separate releases that illustrate how software development evolves and how software
reliability is tested under different conditions. These datasets were carefully chosen from
existing literature and are widely used in various studies. Each dataset has varying charac-
teristics, such as time units and total numbers of failures, allowing for a robust evaluation
framework to analyze the effectiveness of optimization techniques across different real-world
conditions and challenges seen in software reliability modeling. Table 4.34 summarizes the
details of the datasets used for evaluating SRGMs in this study. In this table, the "Measure-
ments" column provides information on the time period during data collection, specified in

days, weeks, or not applicable (N/A) when the unit is unspecified. The "Failures" column

174

displays the accumulative number of failures.

Table 4.34: Summary of datasets used for SRGM Evaluation

Dataset Name Measurements Time Unit Failures Description

DS1 [271] 109 Days 535 A real-time control application with 870
KLOC of FORTRAN.

DS2-R1 [272] 20 Weeks 100 First release testing phase.

DS2-R2 [272] 19 Weeks 120 Second release testing phase.

DS2-R3 [272] 12 Weeks 61 Third release testing phase.

DS2-R4 [272] 19 Weeks 42 Fourth release testing phase.

DS3 [273] 35 Weeks 1301 Radar system software testing data.

DS4 [274] 199 Days 55 The software consists of about 14.5 kilo
lines of ASSEMBLER language and is
developed for a railway interlocking sys-
tem

DS5 [274] 111 Days 481 A real-time control application with daily
collected data.

DS6 [275] 38 Weeks 231 Space shuttle flights application data.

DS7 [270] 46 Days 266 -

4.6.3.6 Evaluation Metrics

To assess the performance of the proposed models in estimating SRGMs, three key metrics
were utilized: MSE, Variance Accounted For (VAF), and the correlation coefficient (R). Each

of these metrics offers insights into different aspects of estimation quality and predictive

accuracy.

1. Mean Squared Error (MSE): MSE is a widely used measure of the average of the

squares of the errors—that is, the average squared difference between the estimated

values and the actual value. It is mathematically defined as:

MSE = (i —vi)* (4.29)

S| =

i=1

where y; is the predicted value and y; is the actual value. Lower values of MSE indicate

better fit of the model to the data.

. Variance Accounted For (VAF): VAF is a statistical measure used to assess the pro-
portion of total variation in a dataset that is explained by the model. Higher VAF

values indicate that the model explains a larger portion of the variance and is thus

175

more effective. It is calculated using the formula:

~ Var(y—y)

VAF (%) = (1)

) x 100% (4.30)

where Var(y —) is the variance of the model residuals, and Var(y) is the variance of

the original data.

3. Correlation Coefficient (R): The correlation coefficient, R, measures the strength and
direction of a linear relationship between the predicted values and actual values. It is
a value between -1 and 1 where 1 indicates a perfect positive linear relationship, -1
indicates a perfect negative linear relationship, and 0 indicates no linear relationship
between the variables. It is especially useful in the context of SRGMs as it provides a
clear indication of how well the model predictions conform to the actual trends in the

data. The formula for R is:

n

R— iy (i — %) (i =)
VI (i = 02X (i —)2

where x; and y; are the individual sample points indexed with i, while X and y are the

(4.31)

means of the x and y samples, respectively.

4.6.3.7 Experimental Procedures

In this study, a comprehensive comparative analysis design is used to evaluate the effective-
ness of basic and augmented models in estimating SRGMs. The experimental design was
structured into three distinct experiments, each designed to evaluate different aspects of the

models’ capabilities:

1. Comparison of CSA and CapSA Variants: In the initial experiment, the basic vari-
ants of CSA and CapSA, along with their enhanced versions and the cooperative
island-based models iIECSA and iECapSA), are assessed. Each algorithm is applied
to estimate the parameters of three different SRGMs: the Exponential Model, the De-

layed S-shaped Model, and the Power Model. The effectiveness of each algorithm is

176

tested across ten distinct datasets.

2. Detailed Parameter Estimation: The second experiment focuses on the best-performing
optimization model, as determined by the outcomes of the first experiment. For each
selected SRGM, the parameters a (scale factor) and b (rate of failure detection) are
analyzed. Various visualization techniques are employed to illustrate the quality of
the estimations, including plots of the actual versus estimated failures and scatter plots

that highlight the correlation between estimated and measured values.

3. Benchmarking Against Established Metaheuristics: The third experiment extends
the validation by comparing the best-performing models from the initial experiment

against a selection of ten well-known metaheuristic algorithms.

4.6.3.8 Results of CSA and CapSA Variants for SRGMs

In this comprehensive evaluation, Table 4.35 presents the average MSE obtained by each
variant of CSA and CapSA applied to Exponential, Delayed S-Shaped, and Power SRGMs
across ten datasets. The results provide valuable benchmarks that reveal the precision of
each algorithm in estimating parameters. Notably, ECSA demonstrates superior performance
compared to the basic CSA in all test cases. Similarly, ECapSA outperforms CapSA in
every scenario. A closer examination reveals very competitive outcomes between iIECSA
and ECSA, with identical results in the majority of cases. However, iECSA surpasses ECSA
in 40% of the scenarios. Interestingly, iCapSA exhibits superiority over ECapSA in all test
cases, highlighting the effectiveness of its island-based approach.

The overall mean rank, which represents overall performance, reveals that iECSA is the
most effictive (with a rank of 1.55), followed by ECSA (ranked 2.02), iECapSA (ranked
3.13), CSA (ranked 3.87), ECapSA (ranked 4.43), and CapSA (ranked 6.00). This ranking
sheds light on the competitive landscape of SRGM estimation, highlighting the significant
gains of enhanced variants and the optimization efficiency of cooperative models like iIECSA.
This ranking highlights the significant gains of enhanced variants and the optimization effi-
ciency of cooperative models like iIECSA.

The MSE convergence curves for the delayed S-shaped SRGM across selected datasets

177

Table 4.35: Average MSE obtained by CSA and CapSA variants for SRGM parameter
estimation across diverse datasets

Dataset ~ Model CSA ECSA CapSA ECapSA iECSA iECapSA
DS-1 Exponential 832.9371 823.7756 1236.806 831.442 823.7756 824.1108
Delayed S-Shaped | 223.8423 222.0614 645.8898 223.4968 222.0614 222.1688

Power 1708.484 1708.477 1846.375 1716.145 1708.477 1708.564

DS-2-R1 Exponential 11.61833 11.61711 14.68396 11.64696 11.61711 11.61842
Delayed S-Shaped | 25.25644 25.25638 25.63897 25.26045 25.25638 25.25674

Power 23.35376 23.35341 29.54804 23.38944 23.35341 23.35412
Exponential 2327168 23.26492 27.8051 23.35933 23.26492 23.26651

DS-2-R2 Delayed S-Shaped | 13.14209 13.14193 14.51285 13.16343 13.14193 13.14257
Power 43.33847 43.33782 53.33324 44.22213 43.33782 43.3402
Exponential 22.07759 21.92471 25.42928 219199 2192038 21.9199

DS-2-R3 Delayed S-Shaped | 8.018695 8.018679 8.344146 8.019457 8.018679 8.018848
Power 22.87514 22.8742 30.29059 22.88428 22.8742 22.87453
Exponential 4.591566 4.506024 5.687898 4.543267 4.502008 4.501976

DS-2-R4 Delayed S-Shaped | 0.979913 0.9799 1.176811 0.980354 0.9799 0.979937
Power 6.251995 6.249236 14.58894 6.292839 6.249236 6.249474
Exponential 12562.24 11541.55 15599.16 11520.93 11521.63 11520.93

DS-3 Delayed S-Shaped | 2713.447 2713.218 3668.76 2718327 2713.218 2713.766
Power 9070.404 9070.385 10636.88 9107.148 9070.385 9107.141
Exponential 50.64331 42.0274 60.44406 36.3099 35.51735 35.50973

DS-4 Delayed S-Shaped | 9.089848 7.886267 19.43244 7.255138 7.064083 7.064893
Power 46.49216 18.76543 105.5807 35.15815 11.96032 20.16518
Exponential 792.0958 791.519 1002.019 792.4542 791.5172 791.6149

DS-5 Delayed S-Shaped | 323.86 323.8196 365.2136 324.1367 323.8196 323.8518
Power 2275.824 2275.823 2292901 2276.169 2275.823 2275.852
Exponential 26.48546 23.2684 125.1229 22.12133 20.19431 20.19999

DS-6 Delayed S-Shaped | 126.3304 126.3272 154.3746 126.5221 126.3272 126.3326
Power 13.8483 13.8436 88.51212 17.20592 13.8436 13.84821
Exponential 150.0178 147.8874 230.4005 148.7787 147.8805 147.8946

DS-7 Delayed S-Shaped | 345.3016 345.2994 375.5375 345.4135 345.2994 345.306
Power 150.7345 150.7316 210.0545 151.4052 150.7316 150.7518

Mean Rank 3.87 2.02 6.00 443 1.55 3.13

are shown in Figure 4.29. These curves show how the CSA and CapSA variants converged
during the optimization process. Notably, while the final MSE values are comparable among
the algorithms, island-based models such as iECSA and iECapSA showed faster convergence
with fewer iterations and attained lower MSEs. This fast convergence proves their effective-
ness in finding optimal parameters for SRGMs and indicates their potential for time-critical

applications that require quick model tuning.

178

— CSA
104 4
—— ECSA — CsA
— CapsA —— ECSA
—— ECapSA 6 x 10! —— CapSA
— iECSA — FEccas’fA
N i |
iECapSA — iECapSA
w
g 4
107 = 4x10t
3x10*
0 10 20 30 40 50 0 10 20 30 40 50
Iterations Iterations
(a) DS-1 (b) DS-2-R1
— CSA
— CSA —— ECSA
ECSQA —— CapSA
ap —— ECapSA
6x 10! _ p:
o — e
. —— iECapSA —— iECapSA
u 4 x 10 ug.: 104 1
= 3x10!
2x 10!
0 10 20 30 40 50 0 10 20 30 40 50
Iterations Iterations
(c) DS-2-R2 (d) DS-3
— CSA — CSA
—— ECSA —— ECSA
—— CapSA —— CapSA
102 4 —— ECapSA —— ECapSA
—— IECSA —— IECSA
—— iECapSA —— iECapSA
w w
%] wn
= =
103 4
101 4
0 10 20 30 40 50 0 10 20 30 40 50
Iterations Iterations
(e) DS-4 (f) DS-5
6x 102 — CSA — CsA
—— ECSA —— ECSA
—— CapSA 10° 4 —— CapSA
—— ECapSA —— ECapSA
4x10? —— iECSA —— iECSA
—— iECapSA —— iECapSA
w 3x10? w
w (%)
= = 6x10?
2% 102
4 %102
0 10 20 30 40 50 0 10 20 30 40 50
Iterations Iterations

Figure 4.29: MSE convergence trends for CSA and CapSA variants on Delayed S-Shaped

SRGM

179

Table 4.36: VAF results of CSA and CapSA variants for SRGM parameter estimation
across 10 datasets

Dataset ~ Model CSA ECSA CapSA ECapSA iECSA iECapSA
DS-1 Exponential 97.31927 97.34317 96.06008 97.32918 97.34317 97.34551
Delayed S-Shaped | 99.26438 99.27067 97.94214 99.26571 99.27067 99.27055

Power 9439411 94.39397 94.08971 94.38894 94.39397 94.39484

DS-2-R1 Exponential 98.57178 98.572 98.22076 98.56854 98.572 98.57178
Delayed S-Shaped | 97.14106 97.14081 97.07327 97.13765 97.14081 97.14015

Power 97.13268 97.1328 96.47542 97.13065 97.1328 97.13283
Exponential 08.25795 98.25825 97.93939 98.2533 98.25825 98.25855

DS-2-R2 Delayed S-Shaped | 99.05915 99.05956 98.95323 99.05637 99.05956 99.05874
Power 96.73398 96.73399 96.22333 96.68687 96.73399 96.73429
Exponential 95.00443 95.04363 94.30478 95.03912 95.03902 95.03913

DS-2-R3 Delayed S-Shaped | 98.10918 98.10918 98.03545 98.10906 98.10918 98.10916
Power 94.64171 94.64228 93.47207 94.64513 94.64228 94.643
Exponential 97.65893 97.69828 97.14673 97.68618 97.70114 97.70134

DS-2-R4 Delayed S-Shaped | 99.47431 99.47432 99.38039 99.47409 99.47432 99.4743
Power 96.69678 96.69647 93.07372 96.6913 96.69647 96.69719
Exponential 94.52222 95.00277 93.2617 95.00691 95.00953 95.00691

DS-3 Delayed S-Shaped | 98.74244 98.74223 98.33481 98.74145 98.74223 98.74321
Power 95.80364 95.80342 95.41571 95.81513 95.80342 95.81524
Exponential 87.74311 89.99245 85.2724 91.33633 91.50871 91.51707

DS-4 Delayed S-Shaped | 97.69481 97.95439 95.10962 98.11884 98.1596 98.15948
Power 89.22191 95.38236 75.70576 92.12177 96.9852 95.37573
Exponential 96.5264 96.53205 95.73816 96.53261 96.53184 96.53226

DS-5 Delayed S-Shaped | 98.55138 98.5514 98.3882 98.54982 98.5514 98.55117
Power 89.86392 89.86389 89.81669 89.8628 89.86389 89.86455
Exponential 99.31717 99.38836 96.78533 99.41894 99.46998 99.46932

DS-6 Delayed S-Shaped | 96.93198 96.93179 96.31907 96.92446 96.93179 96.92988
Power 99.62772 99.62779 97.94617 99.54795 99.62779 99.62761
Exponential 97.57715 97.6099 96.35519 97.59595 97.60984 97.60997

DS-7 Delayed S-Shaped | 94.68183 94.68262 94.18295 94.68321 94.68262 94.6818
Power 97.56582 97.56587 96.8526 97.56051 97.56587 97.56616

Mean Rank 3.70 2.63 6.00 3.97 2.40 2.30

When inspecting the VAF outcomes in Table 4.36, it is evident that the enhanced vari-
ants of CSA and CapSA show significant improvement over their standard forms in SRGM
parameter estimation. Specifically, the island-based approaches iECapSA and iECSA, along
with the ECSA algorithm, consistently achieve high VAF scores across the majority of
datasets. This indicates their precision in estimating SRGM parameters. Notably, the iIECapSA
variant has achieved remarkable results, often matching or surpassing its counterparts. Anal-
ysis of the mean ranks across all datasets—including the exponential, delayed S-shaped, and
power models—indicates that iCapSA (with a mean rank of 2.3) and iECSA (with a mean
rank of 2.4) are the top-performing algorithms for SRGM parameter optimization tasks. The
results reported in Tables 4.35 and 4.36 are visually represented in Figure 4.30. The pro-

vided charts illustrate the MSE and VAF values for the exponential, delayed S-shaped, and

180

power models optimized using CSA, ECSA, CapSA, ECapSA, iECSA, and iECapSA across
datasets DS-1, DS-2-R1, and DS-5. These visualizations provide a quick and clear under-
standing of how well the algorithms can accurately estimate software growth models in var-

ious settings.

2000 100
1800 99
1600 03
1400 97
1200
96
1000
95
800
600 94
400 93
200 92
0 91
ECSA CapSA ECapSA iECSA iECapSA ECSA CapSA ECapSA iECSA iECapSA
M Exponential ® Delayed S-Shaped & Power M Exponential ™ Delayed S-Shaped = Power
(a) DS1-MSE (b) DS1-VAF
35 99
30 98.5
25 98
97.5
20
97
15
96.5
10 96
5 95.5
0 95
ECSA CapSA ECapSA iECSA iECapSA ECSA CapSA ECapSA iECSA iECapSA
W Exponential ® Delayed S-Shaped m Power M Exponential m Delayed S-Shaped m Power
(c) DS2-R1-MSE (d) DS2-R1-VAF
2500 101
99
2000
97
1500 95
1000 93
91
500
I | (LI (1 (I
87
ECSA CapsSA ECapSA iECSA iECapSA ECSA CapSA ECapSA iECSA iECapSA
M Exponential ™ Delayed S-Shaped = Power M Exponential ™ Delayed S-Shaped = Power
(e) DS5-MSE (f) DS5-VAF

Figure 4.30: Visualization of MSE and VAF across different datasets and SRGMs using
CSA, ECSA, CapSA, ECapSA, iECSA, and iECapSA

181

4.6.3.9 Detailed Parameter Estimation Results of iECSA

This section focuses on highlighting the superior performance of the iECSA model, which
was established in previous experiments. The results presented in Table 4.37 showcase the
optimal parameters of the SRGMs that were determined by the iECSA algorithm across var-
1ous datasets. It displays the optimal parameter values of a and b for each dataset, along with
the model that had the lowest MSE and highest VAF. It is clear that the Delayed S-shaped
model is the preferred choice for most datasets (7 out of 10), as it is known for capturing the
iterative development and maturation of software systems. However, the Exponential model
is optimal for DS-2-R1 and DS-7, which are typically suited for software processes with a

consistent failure rate over time. On the other hand, the Power model is best for DS-6. These

Table 4.37: Optimal SRGM parameters estimated by iECSA across datasets with
corresponding MSE and VAF

Dataset ~ Best Model a b Model Equation MSE VAF
DS-1 Delayed S-Shaped | 563.761 0.049256 u(t) = 563.761(1 — (14-0.049256¢)e~00492561) 22206 99.27
DS-2-R1 Exponential 130.2015 0.083166 u(t) = 130.2015(1 — ¢~0-083166r) 11.62 98.57

DS-2-R2 Delayed S-Shaped | 127.3989 0.241689 i (r) = 127.3989(1 — (14 0.241689¢)e~0-241689) 1314 99,06

DS-2-R3 Delayed S-Shaped | 74.69518 0.28847 u(r) = 74.69518(1 — (14-0.28847¢)e 028847 8.02 98.11

DS-2-R4 Delayed S-Shaped | 47.22906 0.207025 u(t) = 47.22906(1 — (1 4 0.207025¢)¢~ 0-207025 098 99.47

DS-3 Delayed S-Shaped | 1689.371 0.089848 u(t) = 1689.371(1 — (1 40.089848¢)e~0-089848") 271322 98.74
()

(

u(t))
u(r) =)
DS-4 Delayed S-Shaped | 101.3656 0.009991 u(¢) = 101.3656(1 — (14 0.009991¢)e~ 000991ty 706 98.16
u(t))

DS-5 Delayed S-Shaped | 488.2343 0.066212 u(t) = 488.2343(1 — (140.066212¢)e~ 00662121y~ 32382 98.55
DS-6 Power 10.80589 0.830345 1 (r) = 10.80589¢°.830345 13.84 99.63
DS-7 Exponential 423.7194 0.023173 p(t) = 423.7194(1 — ¢~00231731) 147.88 97.61

findings show how well the iECSA performs in precisely predicting the parameters of various
SRGMs and adjusting to the underlying patterns in the data to get a good fit. The variability
in the ’a’ and ’b’ parameters across models highlights the algorithm’s flexibility in capturing
the complex dynamics of software failure data. High VAF values across most datasets further
confirm the reliability of the models in predicting the number of failures, which is crucial for

planning and resource allocation in software maintenance and development.

182

(c) DS6 (d) DS7

Figure 4.31: Comparison of actual vs. iECSA-estimated failures across selected datasets
for three SRGMs

A visual comparison between the actual recorded number of failures and the predictions
made by the iIECSA-optimized SRGMs for selected datasets is illustrated in Figure 4.31.
The proximity of the estimated fault curves to the actual data points highlights the predictive
accuracy of the model. It is clear that the Delayed S-Shaped model shows a strong alignment
with the real data in datasets DS-1 and DS-5, indicating a highly accurate fit that well reflects
the underlying failure process. In contrast, the Exponential model displayed for DS-7 shows
an initial overestimation, which stabilizes as time progresses, closely following the trend of
the actual failures. Meanwhile, the Power model’s fit to DS-6 indicates a good estimation
throughout the observation period, with only minor deviations. Overall, the congruence of
these curves validates the efficacy of iECSA in estimating parameters, demonstrating its po-
tential usefulness in software reliability and fault prediction tasks. The actual vs. predicted
cumulative faults and correlation scatter plots for the Delayed S-shaped SRGM estimated by
1IECSA are depicted in Figure 4.32. These plots provide a comprehensive investigation of

the predicted accuracy of the iIECSA model for the Delayed S-shaped SRGM using datasets

183

e Actal ® _Estimated vs. Measured
Predicted Conaiucit Conmend (R): 0.996 /

-) o~
H s . ;V”
E 0 Za0 2%
H 2 '.o;/
z 3 .4/
H

100 200 300 00 500

By o _Estmated vs Measurea
cEmadraiened, my: 0903]
200 predicted 100 (R) °
~%
-5
Pid
%
0 § a0 PR
3 s
g H P
g s -~
2 £ . -
E) 3 -
£ £ e
H 3 sr
3 3 o’
“ w0 faw Pl
& I
-
)/
-~
B 2 s
/ -
.
25 50 75 o s mo wms w0 g w @ 0

(c) DS_2_R1 (d) DS_2_R1

1600 { o Actar 1000 {8 _Estmated v, measurea
Predicted LoiGausicosniaant (R): 0.994 "j
1200 1200 s
PN
Y s
1000 £ 1000 ST
& -
H P
500 ¢ oo -
-
H i
600 600 i
. .
a0 g o 23
.
o/’
200 200 o7
P
- of -

i

Cumulative Failures

Estimated Cumulative Fall

o cual =
Predicted o5 =] ,
%
7
00 400 4
e ld
‘ NS
g E FaRe
Ex0 § 300 Fg
] #
H £ P
2200 S 20 =f
g . R of
& .
100 100 <

(i) DS_5 () DS_5

Estimated Cumulative Fail

Figure 4.32: Actual vs. predicted cumulative faults and correlation scatter plots for the
Delayed S-shaped SRGM estimated by iECSA

184

DS1, DS2_R1, DS3, DS4, and DSS5. The line graphs on the left demonstrate the alignment
of estimated faults over time with the actual observed data. The close alignment of the two
curves in each graph highlights the excellent precision of iECSA in accurately representing
the total number of errors throughout the software lifecycle.

The scatter plots on the right depict the correlation between the measured and estimated
cumulative faults. Each point represents an aggregated data point over time, with the dashed
line indicating a perfect correlation. We can see that the proximity of the points to this line,
together with the high correlation coefficients observed, indicate the robust prediction pow-
ers. The scatter plots demonstrate a significantly strong correlation, as seen by the correlation
coefficients R of 0.996, 0.993, 0.994, 0.991, and 0.993 for DS1, DS2_R1, DS3, DS4, and
DSS5, respectively. These findings again reinforce the strong predictive capabilities of the

1IECSA and its suitability for effective software reliability growth modeling.

4.6.3.10 Benchmarking Results: Comparison with well-known algorithms

Table 4.38: Comparative MSE of iECSA and other Metaheuristic Algorithms for SRGM
Parameter Estimation

Dataset BAT DE JAYA PSO SSA WOA SCA GWO HHO AO AOA iECSA
DS-1 1793.76003 222.0619686 222.0750198 222.554258 441.475842 876.2813393 271.6464431 222.1482431 1107.731565 1795.937453 689.4712118 222.0614259
DS-2-R1 38.2703824 25.25638215 2525648467 25.2563867 252563813 33.26444853 26.53313548 25.25984591 26.68642165 27.76591801 2531468014 25.25638133
DS-2-R2 18.5708968 13.14193679 13.14220011 13.1419393 13.1419338 36.03961131 15.15197711 13.14828611 16.66267333 17.47519496 14.86028335 13.14193376
DS-2-R3 11.9502273 8.018679927 8.018885162 8.01868973 8.01867999 12.37108611 8.500845534 8.019613138 9.9423558 8.773072134 1190277773 8.018679082
DS-2-R4 2.45973575 0.979900751 0.980005835 0.97990223 0.9799064 2.911764872 1.153821677 0.980515891 1.48571669 1.902874538 1.681959935 0.979899526
Ds-3 5606.60569 2730.716004 2713.894292 2745.9164 2997.91746 5298.935145 2892.610232 2713.933269 3464.990595 5250.063533 7620.749634 2713.218241
DS-4 97.4479918 1591199084 7.234672305 7.08019583 16.015029 28.60203195 7.194111755 7.064689205 34.49390423 87.94721833 11.79045859 7.064082936
DS-5 1427.52897 323.8196607 323.8209058 323.826085 323.82079 739.4149586 360.6362403 3239117571 717.5924166 707.0692779 823.7600039 323.8195631
DS-6 180.343703 126.3272323 126.3362634 126.327402 130.399848 184.3556831 131.098337 126.3396429 133.2364133 180.391771 203.8756409 126.3271687
Ds-7 473953691 345.5127105 3453033919 345.300451 365.491504 451.0891056 356.9659115 345.3176545 376.381344 429.2647964 458.6474753 345.2993728
Mean Rank 11.2 32 4.1 3.8 4.8 10.6 6.6 4.8 8.8 9.7 9.3 1.1

The MSE values achieved by different metaheuristic algorithms, including the proposed
1IECSA, are compared in Table 4.38. These algorithms were used to estimate the parameters
of the Delayed S-Shaped model using various datasets. All algorithms were tested using
population size of 30 and a maximum iterations of 50. It is observed that iECSA consistently
outperforms other methods, as indicated by its lowest MSE values. This suggests that iECSA
has a high level of precision in estimating parameters, which is further supported by its
mean rank of 1.1. Additionally, there are other algorithms like DE and JAYA that show
impressive results, with mean ranks of 3.2 and 4.1, respectively. In this context, it is worth

mentioning that traditional algorithms like BAT and newer ones like AOA have higher mean

185

ranks, suggesting that they may be less accurate.

Table 4.39: Average VAF scores of iIECSA and other Metaheuristic Al- gorithms for
SRGM Parameter Estimation

Dataset BAT DE JAYA PSO SSA WOA SCA GWO HHO AO AOA iECSA

DS-1 952762571 99.27067902 99.27083511 99.2690429 98.5834882 97.14087657 99.19921235 99.27049412 96.46108951 96.31810616 97.97641292 99.27066599
DS-2-Rl 95.6911427 97.14077813 97.14088575 97.1407703 97.1408066 96.20651835 96.99596572 97.1403022 96.95863616 96.86649547 971526829 97.140806
DS-2-R2 98.6651021 99.05956334 99.05974316 99.0595799 99.0595564 97.41998209 98.95247313 99.05804179 98.80466127 98.83005861 98.94527839 99.05955577
DS-2-R3 972186126 98.1091821 98.10917794 98.1091815 98.1091817 97.1345105 98.04425617 98.10908802 97.66700037 98.00125038 97.24209404 98.10918194
DS-2-R4 98.7091081 99.47431565 99.47428646 99.4743146 99.4743122 98.45241132 99.4089447 99.47412947 99.20894505 99.15038257 99.11268929 99.47431589
DS-3 97.4015394 98.7355239 9874274149 98.7300983 98.6062566 97.56198569 98.67831132 987426778 98.42194688 97.90521306 96.52189256 98.74223094
DS-4 78.3606385 95.93689058 98.13977741 98.1576912 95.8377981 92.63069747 98.13466222 98.15993584 91.32530193 80.06743237 97.40008643 98.15959569
DS-5 952954894 98.55139177 98.55141318 98.5513165 98.551411 96.78938096 98.4726046 98.55121411 96.79158514 97.89541113 96.57240567 98.55139889
DS-6 957081253 96.93143101 96.93197321 96.9315582 96.8417564 95.40987998 96.86072554 969320472 9672346452 9570403574 9543415496 96.93178722
DS-7 929034718 94.67711919 94.68269687 94.6824703 94.4031559 93.12181563 94.55080446 94.68179713 94.1872969 93.7232105 93.05243797 94.6826203
Mean Rank 113 38 2.3 4 52 10.7 6.5 43 8.9 9.4 8.8 2.8

A comparison of the VAF scores achieved by several metaheuristic algorithms against
1IECSA is presented in Table 4.39. iECSA demonstrates satisfied performance, with an aver-
age rank of 2.8 (in the second place). The algorithms DE and JAYA are highly competitive,
as seen by their mean ranks of 3.8 and 2.3, respectively. In summary, the VAF results in-
dicate that iECSA, with its advanced adaptation mechanisms and integrated island-based
methodology, offers a precise estimation of SRGM parameters. This confirms its potential

as a dependable tool for software reliability analysis.

186

Chapter Five: Discussion

This Chapter provides an in-depth discussion of the findings obtained from the extensive
experiments conducted in Chapter 5. Moreover, this Chapter aims to establish a connection
between the obtained results and the initial study objectives and consider their wider impli-
cations. Hence, the chapter is structured into three main sections. Section 5.1, "Discussion
of Results," investigates the outcomes in detail and correlates the empirical data with the
theoretical frameworks to reveal their significance. Section 5.2, "Implications," presents the
potential academic and practical impacts of the research. Finally, Section 5.3, "Limitations,"
acknowledges the constraints and challenges encountered during the research. This reflec-
tive examination critiques the study’s scope and methodologies, proposing areas for future

research and highlighting opportunities for further inquiry.

5.1 Discussion of Results

This section provides an in-depth inspection of the results achieved in the experimentation
with mathematical benchmarks and real-world applications. These discussions aim to link
the experimental outcomes to the research objectives and questions outlined at the beginning
of the study, thus providing a deeper understanding of how the enhancements and adapta-
tions of the CSA and CapSA algorithms influence their performance in diverse optimization

environments.

5.1.1 Enhancements to CSA and CapSA

The experiments conducted on the 53 mathematical benchmark functions revealed signif-
icant improvements in the optimization capabilities of the enhanced variants of CSA and
CapSA. These enhancements have proven especially effective in handling unimodal func-
tions, demonstrating exceptional exploitation capabilities. Furthermore, the enhanced vari-
ants showed competitive performance in multimodal scenarios, indicating robust exploration

abilities. This improvement is attributed to the integration of novel operators and

187

mechanisms that strategically enhance the algorithms’ ability to balance exploration and

exploitation, which is crucial in complex optimization landscapes.

5.1.2 Integration of Island-Based Model

The integration of the island-based model into the basic and improved versions of CSA and
CapSA has significantly strengthened their optimization capabilities. This approach seg-
ments the population into multiple sub-populations, facilitating more efficient exploration
of the search space. The transfer of optimal solutions across different islands leads to a di-
verse set of solutions, which in turn improves the algorithms’ global search capabilities and
prevents premature convergence. The frequent information exchanges enabled by the mi-
gration mechanisms of the island model enhance its ability to maintain a balance between
exploration and exploitation. It is crucial to maintain an optimal level of population diver-
sity to prevent stagnation and boost overall search performance. The island-based models
leverage this diversity to oscillate and maintain a high-quality population, which proves to

be especially useful when dealing with complex optimization challenges.

5.1.3 Adaptive Island-Based Migration Policy

It has been observed that island-based models are particularly sensitive to their migration
parameters, such as migration frequency and rate. Finding the optimal settings for these
parameters can be both challenging and time-consuming. After extensive experimentation,
it was found that the migration rate significantly influences the performance of island-based
models. To address these challenges, an adaptive migration policy was introduced. The use
of an adaptive island-based migration policy has been a significant improvement over static
policies. This approach allows for migration rate adjustments based on real-time optimiza-
tion needs. The flexibility of this policy has proven to be beneficial in handling unpredictable
optimization landscapes, as seen in the performance on the challenging CEC2014 benchmark
functions. The ability to dynamically adjust migration rates without a lot of pre-tuning em-

phasizes its usefulness in real-world scenarios.

188

5.1.4 Application to Real-World Problems

The effectiveness of the proposed models was further validated through their application to
real-world problems such as neural network training, image segmentation, and software re-
liability growth modeling. It has been observed that in real-world applications, the proposed
basic and enhanced variants, along with the island-based models, exhibit varied performance.
The varying outcomes across different real applications highlight the challenge of achieving
consistent improvements. For example, the enhanced variant of CSA does not demonstrate
superior performance for neural network training and image segmentation compared to the
original CSA, which shows good effectiveness. However, the adaptive-island-based models,

particularly iIECapSA and iECSA, provide promising results across all tested applications.

* Neural Network Training: Metaheuristic-based optimization, specifically iECapSA,
has been shown to yield comparable or even better classification results than traditional
gradient descent methods. These models excel at finding optimal weights and biases
that minimize classification errors, leading to higher-quality classification outcomes.
As a result, metaheuristic models can be useful tools for fine-tuning machine learning

parameters and tackling complex classification tasks.

* Image Segmentation: The results showed that both basic and enhanced versions of the
algorithms have their advantages in segmentation tasks, with enhanced versions such
as iIECapSA providing significant improvements in certain cases. In addition, applying
the models to multilevel thresholding for image segmentation revealed that increasing
the number of thresholds significantly enhances segmentation quality. iECapSA, in
particular, used extra thresholds to improve segmentation details, which is vital for

precise medical image analysis.

* Software Reliability Growth Models: In the application of SRGMs, it is evident that
not all models are appropriate for all datasets. The nature of the data and its particular
characteristics play a major role in choosing the right model. In most datasets, the
delayed S-shaped model is the most popular choice among the tested models. This

preference is supported by the model’s consistent capacity to produce a better fit than

189

alternative models, as seen by its strong correlation coefficients, higher VAF, and MSE.
These indicators show a strong correlation with the real data trends, which is essential
for predicting software reliability effectively. Furthermore, the study results confirm
the effectiveness of the island-based approaches, specifically the iIECSA model, in
accurately estimating SRGMs parameters. iIECSA has demonstrated a superior ability
to predict outcomes by efficiently benchmarking a set of SRGMs. The model’s fast
convergence and accurate parameter estimates closely match the actual data trends,

confirming its exceptional performance.

To sum up, the experiments revealed that using the adaptive island model as a part of the
metaheuristics framework leads to a high-performance search. This simply proves that static
optimization should be replaced with responsive and dynamic techniques. This has been
demonstrated by by the upgraded CSA and CapSA as well as the newly introduced adaptive
migration policy. Briefly, the results of the study help to develop theories about algorithmic

design, but they also show the practical importance of the approach.

5.2 Implications

5.2.1 Theoretical Implications

The findings of this research contribute significantly to the theoretical foundations of opti-
mization algorithms, especially in the field of MHs. Through the augmentation of the CSA
and CapSA exploration and exploitation processes, this study not only advances our un-
derstanding of how these mechanisms influence algorithm performance, but also proves the
practicality of incorporating adaptive strategies as part of these approaches. The successful
implementation of adaptive island-based migration policies could offer a new perspective on
managing population diversity, which might have an impact on the future theoretical devel-

opments in evolutionary computation and metaheuristic optimization.

190

5.2.2 Practical Implications

Regarding the practical implications, the enhancements and the novel adaptive migration
policy proposed in this thesis would have direct impacts on the industries and fields where
complex optimization problems are usually seen. For instance, one of the neural network
training capabilities is the ability to optimize the process, resulting in more accurate and
efficient predictive models useful in healthcare, finance, and other sectors that rely on data-
driven decisions. In addition, the implementation of these enhanced algorithms in image
segmentation, especially in medical imaging, for instance, the CT scans of COVID-19, is
able to increase the accuracy and speed of diagnosis which in turn can directly impact patient
care and treatment planning. The adaptation of these algorithms for SRGMs shows that better
software development practices might be possible for developing more stable and reliable

software systems.

5.3 Limitations

In this study, various enhancements and novel operators were integrated into CSA and
CapSA, and an adaptive migration rate policy was introduced as a general framework aimed
at enhancing both local and global search capabilities throughout the optimization process.
Despite the extensive experimental work and promising results, it is crucial to acknowledge

certain limitations:

1. Scope of Tested Functions and Applications: The effectiveness of the proposed mod-
els was demonstrated across specific datasets and mathematical functions. However,
these results may not necessarily extend to all types of optimization problems, as the
chosen functions and real-world applications may not cover the full spectrum of sce-

narios encountered in practice.

2. Computational Complexity: While the enhanced algorithms have shown improved
performance, they also require more computational resources. This could be a limit-
ing factor in scenarios where computational resources are constrained or in real-time

applications where rapid response is crucial.

191

3. Parameter Tuning and Migration Parameters: Both the specific internal parameters
of CSA and CapSA and the migration parameters are highly problem-dependent and
require careful tuning for each targeted problem. This can be particularly challenging
in large-scale or time-consuming real-world applications where dynamic adaptation
of parameters is still limited. There is potential for further research in developing
dynamic models that adjust island size, migration frequency, and migration policies
more responsively. For instance, IECSA employs an adaptive migration rate but still
relies on fixed settings for awareness probability, flight length, and the number of

islands, which may not always yield optimal results in complex scenarios.

4. Parallel Implementation Issues: Achieving the goals of island-based metaheuristic
models without excessive overhead is challenging. The primary aim of these models
is to attain high-quality solutions efficiently, minimizing time overhead. This study
focuses on achieving quality solutions, yet the implementation of island models in
parallel and distributed environments introduces additional complexities that must be
managed to optimize performance. To ensure the success of parallel implementations,
it is important to consider various factors such as the mode of cooperation (direct
vs. indirect), communication (synchronous vs. asynchronous), and the architecture of
parallel environments. Additionally, aspects like speedup, efficiency, scalability, and
the balance between computational load and communication overhead should be taken
into account. Addressing these factors effectively can help maximize the benefits of

parallelism while minimizing potential performance bottlenecks.

5. Adaptation to Discrete and Binary Problems: Most metaheuristics and island-based
models are initially designed for continuous optimization problems. Adapting these
models to handle binary problems, such as feature selection, represents a significant

area for future research.

6. Non-Deterministic Nature: Metaheuristics by their nature are non-deterministic. This
implies that the same algorithm might yield different outcomes under varying scenar-

ios or initial configurations. That requires executing more testing in different contexts

192

in order to estimate the accuracy and reliability of the results.

These limitations indicate the need for continued research to address these challenges.
We must improve the methods and extend the application of the proposed models so that

they can provide reliable and robust results in different optimization scenarios.

193

Chapter Six: Conclusion and Future Work

6.1 Summary and Conclusion

This thesis introduced noteworthy improvements in metaheuristic optimization algorithms.
It focused on the improvement of CSA and CapSA algorithms, along with the integration
of an adaptive island-based migration strategy. CSA algorithm has been enhanced with the
introduction of adaptive tournament selection and a modified rule for generating random
solutions, which makes it more efficient in exploiting the search space. CapSA has been
reinforced with some refinements that include a modified follower update mechanism, an
enhanced local best permutation strategy, and an adaptive dual update strategy. These im-
provements included capabilities to enhance the algorithms’ exploitation and exploration
potentials, increase their convergence rate, maintain diversity during the search, and increase
the chances of finding the optimal solution.

The primary research question was to find out how these enhancements and the new mi-
gration policy could lead to the performance improvement of the algorithms across different
optimization challenges. The proposed approaches were assessed using two comprehensive
benchmark suites which had 53 functions in total. In addition to these theoretical tests, three
practical applications were utilized: optimization of neural networks, thresholding for image
segmentation, and the optimization of software reliability growth models. To further vali-
date the efficacy of the proposed models, a comparative analysis was conducted against ten
established metaheuristic algorithms from different categories, including BAT, DE, JAYA,
PSO, SSA, WOA, SCA, GWO, HHO, and AOA. This comparison highlighted that the sug-
gested iIECSA and iECapSA variants provide extremely competitive results, often achieving
the best outcomes across most cases.

The findings confirm that the proposed modifications substantially enhance the explo-
ration and exploitation capabilities of the algorithms, enabling them to perform effectively
on the involved wide range of optimization tasks. The research conducted provides new

insights into the dynamics of metaheuristic algorithms in both theoretical and practical

194

contexts. By integrating adaptive elements and island-based modeling, the algorithms demon-
strated improved performance metrics, suggesting a robust framework for tackling diverse
and dynamic optimization problems. These enhancements contribute to the theoretical un-
derstanding of metaheuristic optimization and also offer practical implications by improving
the efficiency and reliability of algorithms in real-world applications.

The findings ensure that the suggested amendments significantly improve the exploration
and exploitation capabilities of both CSA and CapSA, which, in turn, allow them to perform
effectively on the involved wide range of optimization tasks. The analysis conducted adds
to the existing body of knowledge by examining the dynamics of metaheuristic algorithms
from theoretical and practical perspectives. By incorporating adaptive elements and island-
based modeling, the algorithms displayed better performance metrics, indicating a robust
framework for handling diverse and dynamic optimization problems. These improvements
contribute to the theoretical knowledge of metaheuristic optimization and also have practical
implications by enhancing the efficiency and reliability of algorithms in real-world applica-

tions.

6.2 Recommendations and Future Work

The successful application of adaptive strategies in island-based metaheuristic models has
created a promising pathway for future investigation. Specifically, there is still scope for im-
provement by dynamically adapting model parameters. This can go beyond migration rates
and include adjustments in variable island sizes, migration frequency, and communication
topology. Such enhancements could greatly improve the models’ efficiency, particularly in
distributed computing environments, thus leading to reduced computational overhead. Ex-
ploring adaptive migratory behavior based on shared knowledge could further enhance ex-
ploration and exploitation capabilities, leading to better performance across various domains.
Further exploration of parallelization techniques could also significantly decrease the time
required for complex optimizations.

Building on these advancements, it is recommended that future research efforts general-

ize the findings by applying the enhanced algorithms to a broader range of problems, such

195

as those in emerging fields like deep learning, big data analytics, and scheduling techniques
in cloud computing. This could refine the algorithms to enhance their applicability across
diverse and evolving technological landscapes. Additionally, the development of discrete
and binary variants of the models could enable new applications in feature selection and
discrete optimization, broadening their utility. Moving forward, investigating the scalability
of models like iIECSA and iECapSA for large-scale optimization challenges and exploring
hybridization approaches by combining it with other optimization techniques or problem-
specific heuristics could leverage the strengths of different methodologies, creating syner-
gistic effects that enhance overall optimization capabilities.

Based on the insights gained from this research, further recommendations can be made.
For academic research, it is advised to continue exploring the island model and adaptation
mechanisms within other metaheuristic frameworks and their influence on different types of
problem sets. For industry practitioners, integrating such advanced algorithms into existing
optimization tools can enhance their performance and reliability. Additionally, technology
and engineering administrators might want to elevate research and development in advanced
computational techniques, driven by the growing demand for problem-solving tools. Future
research should also focus on the scalability of algorithms in larger, more complex systems

to better understand their potential and limitations in real-world conditions.

196

References

(1]

(2]

(3]

(4]

[5]

[6]

(7]

(8]

Jorge Nocedal and Stephen J. Wright. Numerical optimization. Springer series in

operations research and financial engineering. Springer, New York, NY, 2. ed. edition,

2006.

EK.P. Chong and S.H. Zak. An introduction to optimization.

IEEE Antennas and Propagation Magazine, 38(2), 1996.

Andreas Antoniou and Wu-Sheng Lu. Practical Optimization: Algorithms and

Engineering Applications. Springer Publishing Company, Incorporated, 1st edition,

2007.

Leandro dos Santos Coelho, Helon Vicente Hultmann Ayala, and Viviana Cocco Mar-
iani. A self-adaptive chaotic differential evolution algorithm using gamma distribu-

tion for unconstrained global optimization. Applied Mathematics and Computation,

234:452-459, 2014.

Tobi Michael Alabi, Emmanuel I. Aghimien, Favour D. Agbajor, Zaiyue Yang, Lin
Lu, Adebusola R. Adeoye, and Bhushan Gopaluni. A review on the integrated opti-
mization techniques and machine learning approaches for modeling, prediction, and

decision making on integrated energy systems. Renewable Energy, 194:822-849,

2022.

Majdi Mafarja, Ali Asghar Heidari, Maria Habib, Hossam Faris, Thaer Thaher, and
Ibrahim Aljarah. Augmented whale feature selection for iot attacks: Structure, anal-

ysis and applications. Future Generation Computer Systems, 112:18-40, 2020.

Muath Sabha, Thaer Thaher, and Marwa M. Emam. Cooperative swarm intelligence
algorithms for adaptive multilevel thresholding segmentation of covid-19 ct-scan im-

ages. JUCS - Journal of Universal Computer Science, 29(7):759-804, 2023.

Thaer Thaher, Mohammed Awad, Mohammed Aldasht, Alaa Sheta, Hamza Turabieh,

and Hamouda Chantar. An enhanced evolutionary based feature selection approach

197

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

using grey wolf optimizer for the classification of high-dimensional biological data.

JUCS - Journal of Universal Computer Science, 28(5):499-539, 2022.

Thaer Thaher, Mahmoud Saheb, Hamza Turabieh, and Hamouda Chantar. Intelligent
detection of false information in arabic tweets utilizing hybrid harris hawks based

feature selection and machine learning models. Symmetry, 13(4), 2021.

Gui Zhou, Min jun Peng, and Hang Wang. Enhancing prediction accuracy for loca
break sizes in nuclear power plants: A hybrid deep learning method with data aug-

mentation and hyperparameter optimization. Annals of Nuclear Energy, 196:110208,

2024.

El-Ghazali Talbi. Metaheuristics: from design to implementation, volume 74. John

Wiley & Sons, 2009.

Zhichao Lu, Ran Cheng, Yaochu Jin, Kay Chen Tan, and Kalyanmoy Deb. Neural
architecture search as multiobjective optimization benchmarks: Problem formulation

and performance assessment. IEEE transactions on evolutionary computation, 2023.

Bin Cao, Jianwei Zhao, Zhihan Lv, and Peng Yang. Diversi-
fied personalized recommendation optimization based on mobile data.

IEEE Transactions on Intelligent Transportation Systems, 22(4):2133-2139, 2020.

H.A. Taha. Operations Research an Introduction. Pearson, 2017.

Sean Luke. Essentials of Metaheuristics. Lulu, second edition, 2013. Awvailable for

free at http://cs.gmu.edu/~sean/book/metaheuristics/.

Tansel Dokeroglu, Tayfun Kucukyilmaz, and El-Ghazali Talbi. Hyper-heuristics: A

survey and taxonomy. Computers & Industrial Engineering, 187:109815, 2024.

Bin Cao, Jianwei Zhao, Yu Gu, Yingbiao Ling, and Xiaoliang Ma. Apply-
ing graph-based differential grouping for multiobjective large-scale optimization.

Swarm and Evolutionary Computation, 53:100626, 2020.

Yuzhu Duan, Yiyi Zhao, and Jiangping Hu. An initialization-free distributed algo-

rithm for dynamic economic dispatch problems in microgrid: Modeling, optimization

198

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

and analysis. Sustainable Energy, Grids and Networks, 34:101004, 2023.

Zhihan Lv, Jingyi Wu, Yuxi Li, and Houbing Song. Cross-layer optimization for in-

dustrial internet of things in real scene digital twins. IEEE Internet of Things Journal,

9(17):15618-15629, 2022.

Guohua Wu. Across neighborhood search for numerical optimization.

Information Sciences, 329:597-618, 2016. Special issue on Discovery Science.

Chao Lu, Jun Zheng, Lvjiang Yin, and Renyi Wang. An improved iter-
ated greedy algorithm for the distributed hybrid flowshop scheduling problem.

Engineering Optimization, pages 1-19, 2023.

Dongqing Luan, Along Liu, Xiaoli Wang, Yanxi Xie, and Zhong Wu. Robust
two-stage location allocation for emergency temporary blood supply in postdisaster.

Discrete dynamics in nature and society, 2022:1-20, 2022.

Yiyong Xiao and Abdullah Konak. The heterogeneous green vehi-
cle routing and scheduling problem with time-varying traffic congestion.

Transportation Research Part E: Logistics and Transportation Review, 88:146-166,

2016.

Bin Cao, Jianwei Zhao, Yu Gu, Shanshan Fan, and Peng Yang. Security-
aware industrial ~ wireless sensor network deployment optimization.

IEEE transactions on industrial informatics, 16(8):5309-5316, 2019.

Ali Asghar Heidari, Mehdi Akhoondzadeh, and Huiling Chen. A wavelet pm2. 5 pre-
diction system using optimized kernel extreme learning with boruta-xgboost feature

selection. Mathematics, 10(19):3566, 2022.

Jiazhao Zhang, Yijie Tang, He Wang, and Kai Xu. Asro-dio: Active subspace ran-

dom optimization based depth inertial odometry. IEEE Transactions on Robotics,

39(2):1496-1508, 2022.

Jinchao Xu, Boyu Mu, Luwei Zhang, Rong Chai, Yanfu He, and Xiaoshuan Zhang.

Fabrication and optimization of passive flexible ammonia sensor for aquatic supply

199

[28]

[29]

[30]

[31]

[32]

[33]

[34]

chain monitoring based on adaptive parameter adjustment artificial neural network

(apa-ann). Computers and Electronics in Agriculture, 212:108082, 2023.

Fevrier Valdez, Juan Carlos Vazquez, Patricia Melin, and Oscar Castillo. Comparative
study of the use of fuzzy logic in improving particle swarm optimization variants for

mathematical functions using co-evolution. Applied Soft Computing, 52:1070-1083,

2017.

Kai Zhang, Zhongzheng Wang, Guodong Chen, Liming Zhang, Yongfei Yang,
Chuanjin Yao, Jian Wang, and Jun Yao. Training effective deep re-
inforcement learning agents for real-time life-cycle production optimization.

Journal of Petroleum Science and Engineering, 208:109766, 2022.

Songwei Zhao, Pengjun Wang, Ali Asghar Heidari, Xuehua Zhao, and Huiling
Chen. Boosted crow search algorithm for handling multi-threshold image prob-

lems with application to x-ray images of covid-19. Expert Systems with Applications,

213:119095, 2023.

Thaer Thaher, Hamouda Chantar, Jingwei Too, Majdi Mafarja, Hamza Tura-
bieh, and Essam H. Houssein. = Boolean particle swarm optimization with var-
ious evolutionary population dynamics approaches for feature selection problems.

Expert Systems with Applications, 195:116550, 2022.

Hui ling Chen, Bo Yang, Su jing Wang, Gang Wang, Da you Liu, Huai zhong Li,
and Wen bin Liu. Towards an optimal support vector machine classifier using a par-

allel particle swarm optimization strategy. Applied Mathematics and Computation,

239:180-197, 2014.

Helong Yu, Kang Yuan, Wenshu Li, Nannan Zhao, Weibin Chen, Changcheng Huang,
Huiling Chen, and Mingjing Wang. Improved butterfly optimizer-configured extreme

learning machine for fault diagnosis. Complexity, 2021:1-17, 02 2021.

Mohammed Azmi Al-Betar, Mohammed A. Awadallah, Sharif Naser Makhad-

meh, Iyad Abu Doush, Raed Abu Zitar, Samah Alshathri, and Mohamed Abd

200

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Elaziz. A hybrid harris hawks optimizer for economic load dispatch problems.

Alexandria Engineering Journal, 2022.

GuoChun Wang, Wenyong Gui, Guoxi Liang, Xuehua Zhao, Mingjing Wang, Majdi
Mafarja, Hamza Turabieh, Junyi Xin, Huiling Chen, Xinsheng Ma, and Yanxia Sun.
Spiral motion enhanced elite whale optimizer for global tasks. Complex., 2021, jan

2021.

Ali Asghar Heidari, Rahim Ali Abbaspour, and Ahmad Rezaee Jordehi.
An efficient chaotic water cycle algorithm for optimization tasks.

Neural Computing and Applications, 28(1):57-85, 2017.

Yuanzhou Zheng, Xuemeng Lv, Long Qian, and Xinyu Liu. An optimal
bp neural network track prediction method based on a ga—aco hybrid algorithm.

Journal of Marine Science and Engineering, 10(10):1399, Sep 2022.

Zhonglai Wang, Dongyu Zhao, and Y1 Guan. Flexible-constrained time-variant hybrid

reliability-based design optimization. Structural and Multidisciplinary Optimization,

66(4):89, 2023.

Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Ma-
farja, and Huiling Chen. Harris hawks optimization: Algorithm and applications.

Future Generation Computer Systems, 97:849 — 872, 2019.

Xizheng Zhang, Zeyu Wang, and Zhangyu Lu. Multi-objective load dispatch for mi-
crogrid with electric vehicles using modified gravitational search and particle swarm

optimization algorithm. Applied Energy, 306:118018, 2022.

IThem Boussaid, Julien Lepagnot, and Patrick Siarry. A survey on optimization meta-

heuristics. Information Sciences, 237:82 — 117, 2013. Prediction, Control and Diag-

nosis using Advanced Neural Computations.

Fevrier Valdez, Juan Carlos Vazquez, Patricia Melin, and Oscar Castillo. Comparative
study of the use of fuzzy logic in improving particle swarm optimization variants for

mathematical functions using co-evolution. Applied Soft Computing, 52:1070-1083,

201

2017.

[43] Aminu Aminu Muazu, Ahmad Sobri Hashim, and Aliza Sarlan. Review of
nature inspired metaheuristic algorithm selection for combinatorial t-way testing.

IEEE Access, 10:27404-27431, 2022.

[44] Kanchan Rajwar, Kusum Deep, and Swagatam Das. An exhaustive review of the

metaheuristic algorithms for search and optimization: taxonomy, applications, and

open challenges. Artificial Intelligence Review, 56:13187-13257, 04 2023.

[45] Alireza Askarzadeh. A novel metaheuristic method for solving constrained engi-

neering optimization problems: Crow search algorithm. Computers & Structures,

169:1-12, 2016.

[46] Malik Braik, Alaa Sheta, and Heba Al-Hiary. A novel meta-heuristic
search algorithm for solving optimization problems: capuchin search algorithm.

Neural Computing and Applications, 33(7):2515-2547, 09 2021.

[47] El-Ghazali Talbi. Parallel Combinatorial Optimization. 04 2006.

[48] Enrique Alba, Gabriel Luque, and Sergio Nesmachnow. Parallel metaheuristics: Re-

cent advances and new trends. International Transactions in Operational Research,

20:1-48, 01 2012.

[49] Arthur Corcoran and Roger Wainwright. A parallel island model genetic algorithm

for the multiprocessor scheduling problem. Selected Areas in Cryptography, 07 1995.

[50] Ting Yee Lim. Structured population genetic algorithms: A literature survey.

Artificial Intelligence Review, 41:385-399, 03 2014.

[51] Monica Pais, Igor Peretta, Keiji Yamanaka, and Edmilson Pinto. Factorial
design analysis applied to the performance of parallel evolutionary algorithms.

Journal of the Brazilian Computer Society, 20, 02 2014.

[52] Mohammed Al-Betar, Mohammed Awadallah, Iyad Doush, Abdelaziz Hammouri,
Majdi Mafarja, and Zaid Alyasseri. Island flower pollination algorithm for global

optimization. The Journal of Supercomputing, 75, 08 2019.

202

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Mohammed Awadallah, Mohammed Al-Betar, Asaju Bolaji, Ilyad Doush, Abdelaziz
Hammouri, and Majdi Mafarja. Island artificial bee colony for global optimization.

Soft Computing, 24, 09 2020.

Mohammed Al-Betar, Mohammed Awadallah, Hossam Faris, Xin-She Yang,
Ahamad Tajudin Khader, and Osama Alomari. Bat-inspired algorithms with natu-

ral selection mechanisms for global optimization. Neurocomputing, 273:448-465, 08

2017.

Bilal Abed-alguni, Ahmad Klaib, and Khalid Nabhar. Island-based
whale optimization algorithm for continuous optimization problems.

International Journal of Reasoning-based Intelligent Systems, 11:319-329, 01

2019.

Bilal H. Abed-alguni and Malek Barhoush. Distributed grey wolf optimizer for nu-

merical optimization problems. IJRIS, 4, 2018.

Mohammed Azmi Al-Betar and Mohammed A. Awadallah. Island bat algorithm for

optimization. Expert Systems with Applications, 107:126-145, 2018.

Jun-ichi Kushida, Akira Hara, Tetsuyuki Takahama, and Ayumi Kido. Island-based

differential evolution with varying subpopulation size. In 2013 IEEE 6th International

Workshop on Computational Intelligence and Applications (IWCIA), pages 119-124,

2013.

Thaer Thaher and Badie Sartawi. An experimental design approach to analyse the
performance of island-based parallel artificial bee colony algorithm. In 2020 IEEE

14th International Conference on Application of Information and Communication

Technologies (AICT), pages 1-7, 2020.

Alfian Akbar Gozali and Shigeru Fujimura. Localized island model genetic algo-

rithm in population diversity preservation. In Proceedings of the 2018 International

Conference on Industrial Enterprise and System Engineering (IcolESE 2018), pages

122-128. Atlantis Press, 2019/03.

203

[61] Ali Wagdy Mohamed, Anas A. Hadi, and Ali Khater Mohamed. Differential evolution
mutations: Taxonomy, comparison and convergence analysis. IEEE Access, 9:68629—

68662, 2021.

[62] Abdelouahab Necira, Naimi Djemai, Salhi Ahmed, Souhail Salhi, and Smail Menani.
Dynamic crow search algorithm based on adaptive parameters for large-scale global

optimization. Evolutionary Intelligence, 15:2153-2169, 09 2022.

[63] Chiwen Qu and Yanming Fu. Crow search algorithm based on neighborhood search

of non-inferior solution set. IEEE Access, 7:52871-52895, 2019.

[64] Teodor Gabriel Crainic. Parallel Metaheuristic Search, pages 809-847. Springer

International Publishing, Cham, 2018.

[65] Majdi M Mafarja and Seyedali Mirjalili. Hybrid whale optimization algorithm with

simulated annealing for feature selection. Neurocomputing, 260:302-312, 2017.

[66] Fred Glover and Gary Kochenberger. Handbook of metaheuristics.
Kluwer Academic Publishers, Boston, 2003, 57, 01 2003.

[67] Matej Crepinsek, Shih-Hsi Liu, and Marjan Mernik. Exploration and exploitation in

evolutionary algorithms: A survey. ACM Comput. Surv., 45(3), jul 2013.

[68] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671-680, 1983.

[69] John H. Holland. Adaptation in Natural and Artificial Systems: An Introductory

Analysis with Applications to Biology, Control and Artificial Intelligence. MIT Press,

Cambridge, MA, USA, 1992.

[70] Bernardo Morales-Castaneda, Daniel Zaldivar, Erik Cuevas, Fernando Fausto, and
Alma Rodriguez. A better balance in metaheuristic algorithms: Does it exist?

Swarm and Evolutionary Computation, 54:100671, 2020.

[71] Xin-She Yang, Suash Deb, and Simon Fong. Metaheuristic al-
gorithms: Optimal balance of intensification and diversification.

Applied Mathematics & Information Sciences, 8:977-983, 08 2013.

204

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Mohammed Eshtay, Hossam Faris, and Nadim Obeid. Metaheuristic-based
extreme learning machines: a review of design formulations and applications.

International Journal of Machine Learning and Cybernetics, 10:1543—-1561, 06 2019.

Fred Glover. Tabu search - part i. INFORMS Journal on Computing, 2:4-32, 01

1990.

N. Mladenovic and P. Hansen. Variable neighborhood search.

Computers & Operations Research, 24(11):1097 — 1100, 1997.

Thomas Feo and Mauricio Resende. Greedy randomized adaptive search procedures.

Journal of Global Optimization, 6:109-133, 03 1995.

Th. G. Stiitzle. Local search algorithms for combinatorial problems: analysis,

improvements, and new applications. Dissertations in Artificial Intelligence-Infix,

220:203, 1999.

C. Voudouris. Guided Local search for combinatorial optimization problems. PhD

thesis, 07 1997.

Daniel Molina, Javier Poyatos, Javier Del Ser, Salvador Garcia, Amir Hussain, and
Francisco Herrera. Comprehensive taxonomies of nature- and bio-inspired optimiza-
tion: Inspiration versus algorithmic behavior, critical analysis and recommendations.

Cognitive Computation, 12:897-939, 2020.

Nazmul Siddique and Hojjat Adeli. Nature inspired computing: An overview and

some future directions. Cognitive Computation, 7:706-714, 12 2015.

Seyedali Mirjalili and Andrew Lewis. The whale optimization algorithm.

Advances in Engineering Software, 95:51 — 67, 2016.

Abdelazim G. Hussien, Mohamed Amin, Mingjing Wang, Guoxi Liang, Ahmed Al-
sanad, Abdu Gumaei, and Huiling Chen. Crow search algorithm: Theory, recent

advances, and applications. IEEE Access, 8:173548-173565, 2020.

Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic systems. In Paolo

Dario, Giulio Sandini, and Patrick Aebischer, editors, Robots and Biological Systems:

205

Towards a New Bionics?, pages 703—712, Berlin, Heidelberg, 1993. Springer Berlin

Heidelberg.

[83] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz.

Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, 10

1999.

[84] Mohd Nadhir Ab Wahab, Samia Nefti-meziani, and Adham Atyabi. A comprehensive

review of swarm optimization algorithms. PloS one, 10:e0122827, 05 2015.

[85] Kashif Hussain, Mohd Salleh, Shi Cheng, and Yuhui Shi. On the ex-
ploration and exploitation in popular swarm-based metaheuristic algorithms.

Neural Computing and Applications, 31:7665-7683, 11 2019.

[86] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In

MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and

Human Science, pages 39-43, 1995.

[87] Jagdish Bansal. Particle Swarm Optimization, pages 11-23. 01 2019.

[88] M. Dorigo, V. Maniezzo, and A. Colorni. Ant sys-
tem: optimization by a colony of cooperating agents.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),

26(1):29-41, 1996.

[89] Dervis Karaboga. An idea based on honey bee swarm for numerical optimization,

technical report - tr06. Technical Report, Erciyes University, 01 2005.

[90] Li Xiao. An optimizing method based on autonomous animats: Fish-swarm algo-

rithm. Systems Engineering - Theory & Practice, 2002.

[91] K. M. Passino. Biomimicry of bacterial foraging for distributed optimization and

control. IEEE Control Systems Magazine, 22(3):52-67, 2002.

[92] Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Ma-
farja, and Huiling Chen. Harris hawks optimization: Algorithm and applications.

Future Generation Computer Systems, 97:849 — 872, 2019.

206

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

M. Khishe and M.R. Mosavi. Chimp optimization algorithm.
Expert Systems with Applications, 149:113338, 2020.

Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf opti-

mizer. Advances in Engineering Software, 69:46 — 61, 2014.

Seyedali Mirjalili. Moth-flame optimization algorithm: A novel nature-inspired

heuristic paradigm. Knowledge-Based Systems, 89:228 — 249, 2015.

Afshin Faramarzi, Mohammad Heidarinejad, Seyedali Mirjalili, and A. H.
Gandomi. Marine predators algorithm: A nature-inspired metaheuristic.

Expert Systems with Applications, 152:113377, 2020.

Shimin Li, Huiling Chen, Mingjing Wang, Ali Asghar Heidari, and Seyedali Mir-
jalili. Slime mould algorithm: A new method for stochastic optimization.

Future Generation Computer Systems, 111:300 — 323, 2020.

Malik Braik, Alaa Sheta, and Heba Al-Hiary. A novel meta-heuristic
search algorithm for solving optimization problems: capuchin search algorithm.

Neural Computing and Applications, 07 2020.

Ingo Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, Germany,

1973.

John Koza. Genetic programming: On the programming of computers by means of

natural selection. Complex Adap. Syst., 1, 01 1992.

Rainer Storn and Kenneth V. Price. Differential evolution — a sim-

ple and efficient heuristic for global optimization over continuous spaces.

Journal of Global Optimization, 11:341-359, 1997.

Pablo Moscato. On evolution, search, optimization, genetic algorithms and martial
arts: Towards memetic algorithms. Technical report, Caltech Concurrent Computa-

tion Program (C3P Report 826), Pasadena, CA, 1989.

207

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Xin Yao, Yong Liu, and Guangming Lin. Evolutionary programming made faster.

IEEE Transactions on Evolutionary Computation, 3(2):82—-102, 1999.

Candida Ferreira. Gene expression programming: A new adaptive algorithm for

solving problems. Complex Systems, 13(2):87-129, 2001.

Dan Simon. Biogeography-based optimization.

IEEE Transactions on Evolutionary Computation, 12(6):702-713, 2008.

Robert G. Reynolds. An introduction to cultural algorithms. In Proceedings of the

3rd Annual Conference on Evolutionary Programming, pages 131-139, 1994.

Ravipudi V Rao, Vimal J Savsani, and DP Vakharia. Teaching—learning-based opti-
mization: a novel method for constrained mechanical design optimization problems.

Computer-Aided Design, 43(3):303-315, 2011.

Yuhui Shi. Brain storm optimization algorithm. In Advances in Swarm Intelligence:

Second International Conference, ICSI 2011, Chongqing, China, June 12-15, 2011,

Proceedings, Part I, pages 303—309. Springer, Berlin, Heidelberg, 2011.

Luna Mingyi Zhang, Cheyenne Dahlmann, and Yanqing Zhang. Human-inspired

algorithms for continuous function optimization. In 2009 IEEE International

Conference on Intelligent Computing and Intelligent Systems, volume 1, pages 318—

321, 2009.

Reza Moghdani and Khodakaram Salimifard. Volleyball premier league algorithm.
Applied Soft Computing, 64:161-185, 2018.

Ali Wagdy, Anas Hadi, and Ali Khater. Gaining-sharing knowledge based al-
gorithm for solving optimization problems: a novel nature-inspired algorithm.

International Journal of Machine Learning and Cybernetics, 11:1501-1529, 07 2020.

Junbo Lian and Guohua Hui. Human evolutionary optimization algorithm.

Expert Systems with Applications, 241:122638, 2024.

Richard Formato. Central force optimization: A new metaheuristic with applications

in applied electromagnetics. Progress In Electromagnetics Research, 77:425-491, 01

208

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

2007.

Esmat Rashedi, Hossein Nezamabadi-Pour, and Saeid Saryazdi. Gsa: a gravitational

search algorithm. Information sciences, 179(13):2232-2248, 2009.

A. Kaveh and S. Talatahari. A novel heuristic optimization method: charged system

search. Acta Mechanica, 213(3-4):267-289, 2010.

Seyedali Mirjalili, Seyed Mirjalili, and Abdolreza Hatamlou. Multi-
verse optimizer: a nature-inspired algorithm for global optimization.

Neural Computing and Applications, 27:495-513, 03 2015.

Fatma A. Hashim, Essam H. Houssein, Mai S. Mabrouk, Walid Al-Atabany, and
Seyedali Mirjalili. Henry gas solubility optimization: A novel physics-based algo-

rithm. Future Generation Computer Systems, 101:646—-667, 2019.

A. Kaveh and A. Dadras. A novel meta-heuristic optimization algorithm: Thermal

exchange optimization. Advances in Engineering Software, 110:69-84, 2017.

A. Kaveh and M. Khayatazad. A new meta-heuristic method: Ray optimization.

Computers & Structures, 112-113:283-294, 2012.

Hang Su, Dong Zhao, Ali Asghar Heidari, Lei Liu, Xiaoqin Zhang, Majdi Mafarja,

and Huiling Chen. Rime: A physics-based optimization. Neurocomputing, 532:183—

214, 2023.

Marco Dorigo and Gianni Di Caro. Ant colony optimization: a new meta-heuristic.

In Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No.

99TH8406), volume 2, pages 1470-1477. IEEE, 1999.

James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings of

ICNN’95-international conference on neural networks, volume 4, pages 1942-1948.

IEEE, 1995.

Dervis Karaboga and Bahriye Basturk. A powerful and efficient algo-
rithm for numerical function optimization: artificial bee colony (abc) algorithm.

Journal of Global Optimization, 39:459-471, 2007.

209

[124] Xin-She Yang. Firefly algorithms for multimodal optimization. In Stochastic

algorithms: foundations and applications. SAGA 2009. Lecture Notes in Computer

Science, volume 5792, pages 169—178. Springer, Berlin, Heidelberg, 2009.

[125] Xin-She Yang and Suash Deb. Cuckoo search via 1évy flights. In 2009 World

Congress on Nature & Biologically Inspired Computing (NaBIC), pages 210-214.

IEEE, 2009.

[126] Xin-She Yang and Amir Gandomi. Bat algorithm: A novel approach for global

engineering optimization. Engineering Computations, 29:464-483, 11 2012.

[127] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf opti-

mizer. Advances in Engineering Software, 69:46-61, 2014.

[128] Seyedali Mirjalili. Moth-flame optimization algorithm: A novel nature-inspired

heuristic paradigm. Knowledge-Based Systems, 89:228-249, 2015.

[129] Seyedali Mirjalili. Dragonfly algorithm: A new meta-heuristic optimization
technique for solving single-objective, discrete, and multi-objective problems.

Neural Computing and Applications, 27(4):1053—-1073, 2016.

[130] Shahrzad Saremi, Seyedali Mirjalili, and Andrew Lewis. Grasshopper optimisation

algorithm: Theory and application. Advances in Engineering Software, 105:30-47,

2017.

[131] Yutao Yang, Huiling Chen, Ali Asghar Heidari, and Amir H Gandomi. Hunger games
search: Visions, conception, implementation, deep analysis, perspectives, and towards

performance shifts. Expert Systems with Applications, 177:114864, 2021.

[132] Boli Zheng, Yi Chen, Chaofan Wang, Ali Asghar Heidari, Lei Liu, and Huil-
ing Chen. The moss growth optimization (MGO): concepts and performance.

Journal of Computational Design and Engineering, 11(5):184-221, 09 2024.

[133] Ahmad Ghiaskar, Amir Amiri, and Seyedali Mirjalili. Polar fox optimization al-

gorithm: a novel meta-heuristic algorithm. Neural Computing and Applications,

36:20983-21022, 08 2024.

210

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

Teodor Crainic. Parallel Metaheuristics and Cooperative Search, pages 419-451.

Springer International Publishing, Cham, 2019.

Neha Khanduja and Bharat Bhushan. Recent advances and ap-
plication of metaheuristic algorithms: A survey (2014-2020).

Metaheuristic and Evolutionary Computation: Algorithms and Applications, pages

207-228, 2021.

Fred W Glover and Gary A Kochenberger. Handbook of metaheuristics, volume 57.

Springer Science & Business Media, 2006.

Kai Hwang. Advanced Computer Architecture: Parallelism, Scalability,

Programmability. 01 1993.

J. Kennedy. Stereotyping: improving particle swarm performance with cluster analy-

sis. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat.

No.00TH8512), volume 2, pages 1507-1512 vol.2, 2000.

Roberto Battiti and Giampietro Tecchiolli. Parallel biased search for combinato-

rial optimization: genetic algorithms and tabu. Microprocessors and Microsystems,

16(7):351 - 367, 1992.

Huub M. M. ten Eikelder, Bas J. M. Aarts, Marco G. A. Verhoeven, and Emile H. L.

Aarts. Sequential and Parallel Local Search Algorithms for Job Shop Scheduling,

pages 359-371. Springer US, Boston, MA, 1999.

Teodor Gabriel Crainic and Michel Toulouse. Explicit and emergent cooperation
schemes for search algorithms. In Vittorio Maniezzo, Roberto Battiti, and Jean-

Paul Watson, editors, Learning and Intelligent Optimization, pages 95-109, Berlin,

Heidelberg, 2008. Springer Berlin Heidelberg.

Bilal Abed-alguni, Ahmad Klaib, and Khalid Nabhar. Island-based
whale optimization algorithm for continuous optimization problems.

International Journal of Reasoning-based Intelligent Systems, 11:319-329, 01

2019.

211

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

Marco Tomassini. Spatially Structured Evolutionary Algorithms Artificial Evolution

in Space and Time. 01 2005.

Lucas A. Da Silveira, Jose L. Soncco-Alvarez, Thaynara A. De Lima, and Mauricio

Ayala-Rincon. Heterogeneous parallel island models. In 2021 IEEE Symposium

Series on Computational Intelligence (SSCI), pages 1-8, 2021.

Lourdes Araujo and Juan Julidn Merelo. Diversity through mul-
ticulturality: Assessing migrant choice policies in an island model.

IEEE Transactions on Evolutionary Computation, 15(4):456-469, 2011.

M. Rucinski, D. 1zzo, and F. Biscani. On the impact of the migration topology on the

island model. Parallel Computing, 36(10):555-571, 2010. Parallel Architectures and

Bioinspired Algorithms.

Guo Sun, Yiqiao Cai, Tian Wang, Hui Tian, Cheng Wang, and Yonghong
Chen. Differential evolution with individual-dependent topology adaptation.

Information Sciences, 450:1-38, 2018.

Francisco Vega, Marco Tomassini, and Leonardo Vanneschi.
An empirical study of multipopulation genetic programming.

Genetic Programming and Evolvable Machines, 4:21-51, 03 2003.

Teodor Gabriel. Parallel Meta-heuristic Search, pages 1-39. Springer International

Publishing, Cham, 2016.

Enrique Alba, Gabriel Luque, and Sergio Nesmachnow. Parallel metaheuristics: re-

cent advances and new trends. International Transactions in Operational Research,

20(1):1-48, 2013.

Zbigniew Skolicki and Kenneth De Jong. The influence of migration sizes and in-

tervals on island models. In Proceedings of the 7th Annual Conference on Genetic

and Evolutionary Computation, GECCO 05, page 1295-1302, New York, NY, USA,

2005. Association for Computing Machinery.

Erik Cuevas, Emilio Barocio, and Arturo Conde. A Modified Crow Search Algorithm

212

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

with Applications to Power System Problems, pages 137-166. 01 2019.

Malik Braik, Hussein Al-Zoubi, Mohammad Ryalat, Alaa Sheta, and Omar Alzubi.
Memory based hybrid crow search algorithm for solving numerical and constrained

global optimization problems. Artificial Intelligence Review, pages 1-73, 03 2022.

Tingting Wang, Chengming Zhang, Ankun He, and Wei Dong. Overview of crow

search algorithm. Journal of Physics: Conference Series, 2258(1):012017, apr 2022.

Hossam Hassan Ali, Ahmed Fathy, Mujahed Al-Dhaifallah, Almoataz Y. Abdelaziz,
and Mohamed Ebeed. An efficient capuchin search algorithm for extracting the pa-

rameters of different pv cells/modules. Frontiers in Energy Research, 10, 2022.

Mohammed A.A. Al-qaness, Ahmed A. Ewees, Hong Fan, Laith Abualigah,
Ammar H. Elsheikh, and Mohamed Abd Elaziz. Wind power prediction
using random vector functional link network with capuchin search algorithm.

Ain Shams Engineering Journal, 14(9):102095, 2022.

Sivakumar Ramu, Rameshkumar Ranganathan, and Ramakrishnan Ramamoorthy.
Capuchin search algorithm based task scheduling in cloud computing environment.

Yanbu Journal of Engineering and Science, 19(1):18-29, 3 2022.

Milad Mohseni, Fatemeh Amirghafouri, and Behrouz Pourghebleh. Cedar:
A cluster-based energy-aware data aggregation routing protocol in the
internet of things wusing capuchin search algorithm and fuzzy logic.

Peer-to-Peer Networking and Applications, 16:189-209, 10 2022.

Malik Braik, Mohammed A. Awadallah, Mohammed Azmi Al-Betar, and Abdelaziz I.
Hammouri. A hybrid capuchin search algorithm with gradient search algorithm for

economic dispatch problem. Soft Comput., 27(22):16809-16841, August 2023.

Thaer Thaher, Mohammed Awad, Alaa Sheta, and Mohammed Aldasht. Enhanced
capuchin search algorithm using cooperative island model with application of evolu-

tionary feedforward neural networks. In 2023 International Conference on Intelligent

Computing, Communication, Networking and Services (ICCNS), pages 237-245,

213

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

2023.

Ivette Miramontes, Patricia Melin, and German Prado-Arechiga. = Fuzzy system
for classification of nocturnal blood pressure profile and its optimization with the

crow search algorithm. In Soft Computing Applications: Proceedings of the 8th

International Workshop Soft Computing Applications (SOFA 2018), Vol. II 8, pages

23-34. Springer, 2021.

Niam Abdulmunim Al-Thanoon, Zakariya Yahya Algamal, and Omar Saber Qasim.
Feature selection based on a crow search algorithm for big data classification.

Chemometrics and Intelligent Laboratory Systems, 212:104288, 2021.

Abhilasha Chaudhuri and Tirath Prasad Sahu. Feature selection using binary crow

search algorithm with time varying flight length. Expert Systems with Applications,

168:114288, 2021.

ibrahim Eliguzel and Eren ozceylan. Application of an improved discrete crow
search algorithm with local search and elitism on a humanitarian relief case.

Artificial Intelligence Review, 54:1-27, 08 2021.

Luis Fernando Grisales-Norefia, Brandon Cortés-Caicedo, Gerardo Alcala, and Os-
car Danilo Montoya. Applying the crow search algorithm for the optimal integration

of pv generation units in dc networks. Mathematics, 11(2):387, 2023.

Malik Braik, Hussein Al-Zoubi, Mohammad Ryalat, Alaa Sheta, and Omar Alzubi.
Memory based hybrid crow search algorithm for solving numerical and constrained

global optimization problems. Artificial Intelligence Review, 56(1):27-99, 2023.

Sanjay Kumar, Abhishek Mallik, and Sandeep Singh Sengar. Community detec-
tion in complex networks using stacked autoencoders and crow search algorithm.

The Journal of Supercomputing, 79(3):3329-3356, 2023.

Yang Bai, Li Cao, Binhe Chen, Yaodan Chen, and Yinggao Yue. A novel topology
optimization protocol based on an improved crow search algorithm for the perception

layer of the internet of things. Biomimetics, 8(2):165, 2023.

214

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

Jieguang He, Zhiping Peng, Lei Zhang, Liyun Zuo, Delong Cui, and Qirui Li. En-
hanced crow search algorithm with multi-stage search integration for global optimiza-

tion problems. Soft Computing, pages 1-31, 2023.

Pushpendra Singh, Rajesh Arya, LS Titare, Pradeep Purey, and LD Arya.
Value aided optimal load shedding accounting voltage stability consideration em-
ploying crow search algorithm with modification based on lampinen’s criterion.

Applied Soft Computing, 143:110391, 2023.

Yundi Rao, Dengxu He, and Liangdong Qu. A probabilistic simpli-
fied sine cosine crow search algorithm for global optimization problems.

Engineering with Computers, 39(3):1823-1841, 2023.

Zhao Liu, Wenjie Wang, Guohong Shi, and Ping Zhu. A modified crow search algo-

rithm based on group strategy and adaptive mechanism. Engineering Optimization,

pages 1-19, 2023.

Jeremiah Osei-kwakye, Fei Han, Alfred Adutwum Amponsah, Qing-Hua Ling, and
Timothy Apasiba Abeo. A diversity enhanced hybrid particle swarm optimization

and crow search algorithm for feature selection. Applied Intelligence, pages 1-26,

2023.

Cenk Andic, Ali Ozturk, and Belgin Turkay. Power system state estimation us-
ing a robust crow search algorithm based on pmus with limited number of channels.

Electric Power Systems Research, 217:109126, 2023.

Jieguang He, Zhiping Peng, Lei Zhang, Liyun Zuo, Delong Cui, and Qirui Li. En-
hanced crow search algorithm with multi-stage search integration for global optimiza-

tion problems. Soft Computing, pages 1-31, 06 2023.

Jafar Gholami, Farhad Mardukhi, and Hossam Zawbaa. An improved crow search

algorithm for solving numerical optimization functions. Soft Computing, 25:1-14,

07 2021.

Yukai Ke, Jun Xie, and Somayeh Pouramini. Utilization of an improved crow

215

[178]

[179]

[180]

[181]

[182]

[183]

[184]

[185]

search algorithm to solve building energy optimization problems: Cases of australia.

Journal of Building Engineering, 38:102142, 2021.

Alaa Sheta, Malik Braik, Heba Al-Hiary, and Seyedali Mirjalili. ~Improved ver-
sions of crow search algorithm for solving global numerical optimization problems.

Applied Intelligence, 53:1-45, 08 2023.

Li Cao, Yinggao Yue, Yong Zhang, and Yong Cai. Improved crow search algorithm
optimized extreme learning machine based on classification algorithm and applica-

tion. IEEE Access, 9:20051-20066, 2021.

Soheyl Khalilpourazari and Seyed Hamid Reza Pasandideh. Sine—cosine crow search

algorithm: Theory and applications. Neural Comput. Appl., 32(12):7725-7742, jun

2020.

Rizk M. Rizk-Allah, Aboul Ella Hassanien, and Siddhartha Bhattacharyya. Chaotic

crow search algorithm for fractional optimization problems. Applied Soft Computing,

71:1161-1175, 2018.

Mohit Jain, Asha Rani, and Vijander Singh. An improved crow search algorithm for

high-dimensional problems. Journal of Intelligent & Fuzzy Systems, 33:3597-3614,

11 2017.

Mohammed A. Awadallah, Mohammed Azmi Al-Betar, Iyad Abu Doush,
Sharif Naser Makhadmeh, Zaid Abdi Alkareem Alyasseri, Ammar Kamal Abasi,
and Osama Ahmad Alomari. Ccsa: Cellular crow search algorithm with topo-

logical neighborhood shapes for optimization. Expert Systems with Applications,

194:116431, 2022.

Mohamed Elsayed Abd Elaziz, Souadfel Salima, and Rehab Ibrahim. Boost-
ing capuchin search with stochastic learning strategy for feature selection.

Neural Computing and Applications, pages 1-20, 03 2023.

Malik Braik, Abdelaziz Hammouri, Hussein Alzoubi, and Alaa Sheta. Feature selec-

tion based nature inspired capuchin search algorithm for solving classification prob-

216

[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

lems. Expert Systems with Applications, 235:121128, 2024.

Hossein Asgharzadeh, Ali Ghaffari, Mohammad Masdari, and Farhad Soleimanian
Gharehchopogh. Anomaly-based intrusion detection system in the internet of things
using a convolutional neural network and multi-objective enhanced capuchin search

algorithm. Journal of Parallel and Distributed Computing, 175:1-21, 2023.

Shujing Li, Zhangfei Li, Qinghe Li, Mingyu Zhang, and Linguo Li. Hybrid improved

capuchin search algorithm for plant image thresholding. Frontiers in plant science,

14:1122788, 2023.

T.D. Subha and C. Arunachalaperumal. A hybrid capsa-who method
used for performance enhancement of tandem perovskite solar cell.

Expert Systems with Applications, 230:120554, 2023.

Amjad Qtaish, Malik Braik, Dheeb Albashish, Mohammad Alshammari, Abdulrah-
man Alreshidi, and Eissa Alreshidi. Optimization of k-means clustering method

using hybrid capuchin search algorithm. The Journal of Supercomputing, 80:1-60,

07 2023.

J.G. Digalakis and K.G. Margaritis. On benchmarking functions for genetic algo-

rithms. International Journal of Computer Mathematics, 77(4):481-506, 2001.

Salvador Garcia, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study
on the use of non-parametric tests for analyzing the evolutionary algorithms’ be-
haviour: A case study on the cec’2005 special session on real parameter optimization.

J. Heuristics, 15:617-644, 12 2009.

Xiaodong Li, Andries Engelbrecht, and M. G. Epitropakis. Benchmark functions for
cec’2013 special session and competition on niching methods for multimodal function
optimization. Technical report, Evolutionary Computation and Machine Learning

Group, RMIT University, Melbourne, Australia, 2013.

Mohammed Azmi Al-Betar, Mohammed A. Awadallah, Ahamad Tajudin Khader, and

Zahraa Adnan Abdalkareem. Island-based harmony search for optimization problems.

217

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

Expert Systems with Applications, 42(4):2026 — 2035, 2015.

Mohammed Azmi Al-Betar and Mohammed A. Awadallah. Island bat algorithm for

optimization. Expert Systems with Applications, 107:126 — 145, 2018.

Bilal H. Abed-alguni. Island-based cuckoo search with highly disruptive polynomial

mutation. International journal of artificial intelligence, 17:57-82, 2019.

Raj Jain. The Art of Computer Systems Performance Analysis: Techniques For

Experimental Design, Measurement, Simulation, and Modeling, NY: Wiley. 04 1991.

Jun-ichi Kushida, Akira Hara, Tetsuyuki Takahama, and Ayumi Kido. Island-based

differential evolution with varying subpopulation size. In 2013 IEEE 6th International

Workshop on Computational Intelligence and Applications (IWCIA), pages 119-124,

2013.

Mert Sinan Turgut, Oguz Emrah Turgut, and Deniz Tiirsel Eliiyi. Island-based crow

search algorithm for solving optimal control problems. Applied Soft Computing,

90:106170, 2020.

Alfian Gozali. Dm-limga: Dual migration localized island model genetic al-

gorithm—a better diversity preserver island model. Evolutionary Intelligence,

12:527-539, 12 2019.

Iyad Abu Doush, Mohammed Azmi Al-Betar, Mohammed A. Awadallah, Abdelaziz L.
Hammouri, and Mohammed El-Abd. Island-based modified harmony search algo-
rithm with neighboring heuristics methods for flow shop scheduling with blocking. In

2020 IEEE Symposium Series on Computational Intelligence (SSCI), pages 976-982,

2020.

Aleksander Skakovski and Piotr Jgdrzejowicz. An island-based differential evolu-

tion algorithm with the multi-size populations. Expert Systems with Applications,

126:308 — 320, 2019.

Noor Aldeen Alawad and Bilal Abed-alguni. Discrete island-based cuckoo

search with highly disruptive polynomial mutation and opposition-based learn-

218

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

ing strategy for scheduling of workflow applications in cloud environments.

Arabian Journal for Science and Engineering, 11 2020.

Htet Thazin Tike Thein. Island model based differential evolution algorithm for neural

network training. Advances in Computer Science : an International Journal, 3(1):67—

73, 2014.

René Michel and Martin Middendorf. An island model based ant system with looka-
head for the shortest supersequence problem. In Agoston E. Eiben, Thomas Béck,

Marc Schoenauer, and Hans-Paul Schwefel, editors, Parallel Problem Solving from

Nature — PPSN V, pages 692—701, Berlin, Heidelberg, 1998. Springer Berlin Hei-

delberg.

Mohammad Alshraideh, Basel Mahafzah, and Saleh al sharaeh. A
multiple-population genetic algorithm for branch coverage test data generation.

Software Quality Journal, 19:489-513, 09 2011.

Juan M. Palomo-Romero, Lorenzo Salas-Morera, and Laura Garcia-Hernandez.
An island model genetic algorithm for unequal area facility layout problems.

Expert Systems with Applications, 68:151 — 162, 2017.

Frédéric Lardeux and Adrien Goéffon. A dynamic island-based genetic algorithms

framework. In Simulated Evolution and Learning, pages 156-165, Berlin, Heidelberg,

2010. Springer Berlin Heidelberg.

Salmah Mousbah Zeed Mohammed, Ahamad Tajudin Khader, and Mo-
hammed Azmi Al-Betar. 3-sat using island-based genetic algorithm.

IEEJ Transactions on Electronics, Information and Systems, 136(12):1694-1698,

2016.

Douglas C. Montgomery. Design and Analysis of Experiments. Wiley, Hoboken, NJ,

9th edition, 2019.

Salvador Garcia, Alberto Ferndndez, Julidn Luengo, and Francisco Herrera. Ad-

vanced nonparametric tests for multiple comparisons in the design of experiments

219

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

in computational intelligence and data mining: Experimental analysis of power.

Information Sciences, 180(10):2044-2064, 2010. Special Issue on Intelligent Dis-

tributed Information Systems.

David E. Goldberg, Bradley Korb, and Kalyanmoy Deb. Messy genetic algorithms:

Motivation, analysis, and first results. Complex Systems, 3:493-530, 01 1990.

David E Goldberg and Kalyanmoy Deb. A comparative analysis of selection schemes

used in genetic algorithms. In Foundations of genetic algorithms, volume 1, pages

69-93. Elsevier, 1991.

Chao Lin, Pengjun Wang, Ali Asghar Heidari, Xuehua Zhao, and Huiling Chen. A
boosted communicational salp swarm algorithm: Performance optimization and com-

prehensive analysis. Journal of Bionic Engineering, 20:1296-1332, 2022.

Francesco Biscani and Dario [zzo. A parallel global multiobjective framework for

optimization: pagmo. Journal of Open Source Software, 5(53):2338, 2020.

Dario Izzo, Marek Rucinski, and Francesco Biscani. The Generalized Island Model,

pages 151-169. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

Thaer Thaher, Alaa Sheta, Mohammed Awad, and Mohammed Aldasht. Enhanced
variants of crow search algorithm boosted with cooperative based island model for

global optimization. Expert Systems with Applications, 238:121712, 2024.

Seyedali Mirjalili and Jin Dong. Multi-Objective Optimization using Artificial

Intelligence Techniques. 01 2020.

J.G. Digalakis and K.G. Margaritis. On benchmarking functions for genetic algo-

rithms. International Journal of Computer Mathematics, 77(4):481-506, 2001.

Jing Liang, B. Qu, and Ponnuthurai Suganthan. Problem definitions and evalua-
tion criteria for the cec 2014 special session and competition on single objective

real-parameter numerical optimization. Technical Report 201311, Computational

Intelligence Laboratory, Zhengzhou University, China and Nanyang Technological

University, Singapore, November 2013.

220

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

[228]

[229]

Dheeru Dua and Casey Graff. UCI Machine Learning Repository. Technical report,

University of California, Irvine, School of Information and Computer Sciences, 2019.

Jinyu Zhao, Yichen Zhang, Xuehai He, and Pengtao Xie. Covid-ct-dataset: a ct scan

dataset about covid-19. arXiv preprint arXiv:2003.13865, 2020.

Joseph Paul Cohen, Paul Morrison, Lan Dao, Karsten Roth, Tim Q Duong, and
Marzyeh Ghassemi. Covid-19 image data collection: Prospective predictions are

the future. arXiv 2006.11988, 2020.

Joaquin Derrac, Salvador Garcia, Daniel Molina, and Francisco Her-
rera. A practical tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intelligence algorithms.

Swarm and Evolutionary Computation, 1(1):3-18, 2011.

W.J. Conover. Practical Nonparametric Statistics. John Wiley & Sons, 3 edition,

1999.

Robert H. Riffenburgh. Chapter summaries. In Robert H. Riffenburgh, editor,

Statistics in Medicine (Second Edition), pages 533 — 580. Academic Press, Burling-

ton, second edition edition, 2006.

Myles Hollander and Douglas A. Wolfe. Nonparametric Statistical Methods. John

Wiley & Sons, Hoboken, NJ, 3 edition, 2013.

Seyedali Mirjalili. Sca: A sine cosine algorithm for solving optimization problems.

Knowledge-Based Systems, 96:120-133, 2016.

Laith Abualigah, Dalia Yousri, Mohamed Abd Elaziz, Ahmed A. Ewees, Mo-
hammed A.A. Al-qaness, and Amir H. Gandomi. Aquila optimizer: A novel meta-

heuristic optimization algorithm. Computers & Industrial Engineering, 157:107250,

2021.

Afshin Faramarzi, Mohammad Heidarinejad, Brent Stephens, and Seyedali Mirjalili.

Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems,

191:105190, 2020.

221

[230]

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

Laith Abualigah, Ali Diabat, Seyedali Mirjalili, Mohamed Abd Elaziz,
and Amir H. Gandomi. The arithmetic optimization algorithm.

Computer Methods in Applied Mechanics and Engineering, 376:113609, 2021.

Xin-She Yang. Flower pollination algorithm for global optimization. In Jérdme

Durand-Lose and NataSa Jonoska, editors, Unconventional Computation and Natural

Computation, pages 240-249, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

Hussam Fakhouri, Faten Hamad, and Abedalsalam Alawamrah. Success history in-

telligent optimizer. The Journal of Supercomputing, 78:6461-6502, 04 2022.

Ronald W. Morrison and Kenneth A. De Jong. Measurement of population diversity.
In Pierre Collet, Cyril Fonlupt, Jin-Kao Hao, Evelyne Lutton, and Marc Schoenauer,

editors, Artificial Evolution, pages 31-41, Berlin, Heidelberg, 2002. Springer Berlin

Heidelberg.

Tapas Si, Péricles B.C. Miranda, and Debolina Bhattacharya. Novel enhanced salp
swarm algorithms using opposition-based learning schemes for global optimization

problems. Expert Systems with Applications, 207:117961, 2022.

Nguyen Van Thieu and Seyedali Mirjalili. Mealpy: An open-source library for latest

meta-heuristic algorithms in python. Journal of Systems Architecture, 2023.

R. Rao. Jaya: A simple and new optimization algorithm
for solving constrained and unconstrained optimization problems.

International Journal of Industrial Engineering Computations, 7:19-34, 2016.

Seyedali Mirjalili, Amir H. Gandomi, Seyedeh Zahra Mirjalili, Shahrzad Saremi, Hos-
sam Faris, and Seyed Mohammad Mirjalili. Salp swarm algorithm: A bio-inspired

optimizer for engineering design problems. Advances in Engineering Software,

114:163-191, 2017.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. ~Multilayer feedforward

networks are universal approximators. Neural Networks, 2(5):359-366, 1989.

Mohammed A. Awadallah, Iyad Abu-Doush, Mohammed Azmi Al-Betar, and Ma-

222

[240]

[241]

[242]

[243]

[244]

[245]

[246]

[247]

lik Shehadeh Braik. Chapter 19 - metaheuristics for optimizing weights in neu-

ral networks. In Seyedali Mirjalili and Amir H. Gandomi, editors, Comprehensive

Metaheuristics, pages 359-377. Academic Press, 2023.

Hossam Faris, Ibrahim Aljarah, and Seyedali Mirjalili. Training feedforward
neural networks using multi-verse optimizer for binary classification problems.

Applied Intelligence, 45:322-332, 09 2016.

Seyed Mohammad Mirjalili. How effective is the grey wolf optimizer in training

multi-layer perceptrons. Applied Intelligence, 43:150-161, 2014.

T. Thaher, M. Mafarja, B. Abdalhaq, and H. Chantar. Wrapper-based feature selection

for imbalanced data using binary queuing search algorithm. In 2019 2nd International

Conference on new Trends in Computing Sciences (ICTCS), pages 1-6, 2019.

Thaer Thaher and Rashid Jayousi. Prediction of student’s academic performance us-
ing feedforward neural network augmented with stochastic trainers. In 2020 IEEE

14th International Conference on Application of Information and Communication

Technologies (AICT), pages 1-7, 2020.

K.P. Baby Resma and Madhu S. Nair. Multilevel threshold-
ing for 1image segmentation wusing krill herd optimization algorithm.

Journal of King Saud University - Computer and Information Sciences, 33(5):528—

541, 2021.

Erick Rodriguez-Esparza, Laura A. Zanella-Calzada, Diego Oliva, Ali Asghar Hei-
dari, Daniel Zaldivar, Marco Pérez-Cisneros, and Loke Kok Foong. An efficient har-

ris hawks-inspired image segmentation method. Expert Systems with Applications,

155:113428, 2020.

Essam H Houssein, Marwa M Emam, and Abdelmgeid A Ali. An optimized deep
learning architecture for breast cancer diagnosis based on improved marine predators

algorithm. Neural Computing and Applications, pages 1-19, 2022.

Essam H. Houssein, Kashif Hussain, Laith Abualigah, Mohamed Abd Elaziz, Waleed

223

[248]

[249]

[250]

[251]

[252]

[253]

[254]

[255]

Alomoush, Gaurav Dhiman, Youcef Djenouri, and Erik Cuevas. = An improved
opposition-based marine predators algorithm for global optimization and multilevel

thresholding image segmentation. Knowledge-Based Systems, 229:107348, 2021.

Mohamed H. Merzban and Mahmoud Elbayoumi. Efficient solution of otsu multi-

level image thresholding: A comparative study. Expert Systems with Applications,

116:299-309, 2019.

Nobuyuki Otsu. A threshold selection method from gray-level histograms.

IEEE Transactions on Systems, Man, and Cybernetics, 9(1):62-66, 1979.

JN. Kapur, PK. Sahoo, and A.K.C. Wong. A new method for
gray-level picture thresholding using the entropy of the histogram.

Computer Vision, Graphics, and Image Processing, 29(3):273-285, 1985.

Laith Abualigah, Ali Diabat, Putra Sumari, and Amir H. Gandomi. A novel evolu-
tionary arithmetic optimization algorithm for multilevel thresholding segmentation of

covid-19 ct images. Processes, 9(7), 2021.

Mohamed Abd Elaziz, Ahmed A. Ewees, Dalia Yousri, Husein S. Naji Alwerfali,
Qamar A. Awad, Songfeng Lu, and Mohammed A. A. Al-Qaness. An improved ma-
rine predators algorithm with fuzzy entropy for multi-level thresholding: Real world

example of covid-19 ct image segmentation. IEEE Access, 8:125306-125330, 2020.

Jagat Narain Kapur, Prasanna K Sahoo, and Andrew KC Wong. A new
method for gray-level picture thresholding using the entropy of the histogram.

Computer vision, graphics, and image processing, 29(3):273-285, 1985.

Rajarshi Bandyopadhyay, Rohit Kundu, Diego Oliva, and Ram Sarkar. Seg-
mentation of brain mri using an altruistic harris hawks’ optimization algorithm.

Knowledge-Based Systems, 232:107468, 2021.

Pankaj Upadhyay and Jitender Kumar Chhabra. Kapur’s entropy based optimal mul-

tilevel image segmentation using crow search algorithm. Applied Soft Computing,

97:105522, 2020.

224

[256] Wengi Ji and Xiaoguang He. Kapur’s entropy for multilevel
thresholding image segmentation based on moth-flame optimization.

Mathematical Biosciences and Engineering, 18(6):7110-7142, 2021.

[257] Essam H. Houssein, Bahaa El din Helmy, Diego Oliva, Pradeep Jangir, M. Premku-
mar, Ahmed A. Elngar, and Hassan Shaban. An efficient multi-thresholding based
covid-19 ct images segmentation approach using an improved equilibrium optimizer.

Biomedical Signal Processing and Control, 73:103401, 2022.

[258] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image quality assessment:

from error visibility to structural similarity. IEEE Transactions on Image Processing,

13(4):600-612, 2004.

[259] Cong Jin and Shu-Wei Jin. Parameter optimization of software reliability growth
model with s-shaped testing-effort function using improved swarm intelligent opti-

mization. Applied Soft Computing, 40:283-291, 2016.

[260] Lokendra K. Sharma, R. K. Saket, and B. B. Sagar. ~Software reliability growth

models and tools - a review. In 2015 2nd International Conference on Computing for

Sustainable Global Development (INDIACom), pages 2057-2061, 2015.

[261] Ankur Choudhary, Anurag Singh Baghel, and Om Prakash Sangwan. Efficient
parameter estimation of software reliability growth models using harmony search.

IET Software, 11(6):286-291, 2017.

[262] John D. Musa. A theory of software reliability and its application.

IEEE Transactions on Software Engineering, SE-1(3):312-327, 1975.

[263] Larry H. Crow. Reliability analysis for complex, repairable systems. 1975.

[264] Chin-Yu Huang, M.R. Lyu, and Sy-Yen Kuo. A unified scheme of
some nonhomogenous poisson process models for software reliability estimation.

IEEE Transactions on Software Engineering, 29(3):261-269, 2003.

[265] Taehyoun Kim, Kwangkyu Lee, and Jongmoon Baik. An effective approach to esti-

mating the parameters of software reliability growth models using a real-valued ge-

225

[266]

[267]

[268]

[269]

[270]

[271]

[272]

[273]

[274]

netic algorithm. Journal of Systems and Software, 102:134-144, 2015.

Michael R. Lyu, editor. Handbook of software reliability engineering. McGraw-Hill,

Inc., USA, 1996.

Chao-Jung Hsu and Chin-Yu Huang. A study on the applicability of modified genetic
algorithms for the parameter estimation of software reliability modeling. In 2010

IEEE 34th Annual Computer Software and Applications Conference, pages 531-540,

2010.

Alaa F. Sheta and Amal Abdel-Raouf. Estimating the parameters of soft-
ware reliability growth models using the grey wolf optimization algorithm.

International Journal of Advanced Computer Science and Applications, 7(4), 2016.

Li Zhen, Yang Liu, Wang Dongsheng, and Zheng Wei. Parameter estimation of
software reliability model and prediction based on hybrid wolf pack algorithm and

particle swarm optimization. IEEE Access, 8:29354-29369, 2020.

A. Sheta. Reliability growth modeling for software fault detection using parti-

cle swarm optimization. In 2006 IEEE International Conference on Evolutionary

Computation, pages 3071-3078, 2006.

Y. Tohma, K. Tokunaga, S. Nagase, and Y. Murata. Structural approach to the esti-
mation of the number of residual software faults based on the hyper-geometric distri-

bution. IEEE Transactions on Software Engineering, 15(3):345-355, 1989.

A. Wood. Predicting software reliability. Computer, 29(11):69-77, 1996.

W.D. Brooks, R.W. Motley, and IBM FEDERAL SYSTEMS DIV GAITHERSBURG

MD. Analysis of Discrete Software Reliability Models. Defense Technical Informa-

tion Center, 1980.

T. Minohara and Y. Tohma. Parameter estimation of hyper-geometric distribution

software reliability growth model by genetic algorithms. In Proceedings of Sixth

International Symposium on Software Reliability Engineering. ISSRE’95, pages 324—

329, 1995.

226

[275] P. N. Misra. Software reliability analysis. IBM Systems Journal, 22(3):262-270,

1983.

227

Appendices

Appendix A: Characteristic Tables of Real-Valued Mathematical Func-

tions

Table A-1: Description of the standard unimodal benchmark functions.

Function Dimensions Range Simin
i) =X 2 30,100,500 [—-100,100] 0
Hx)= p- |x; |+ I, |2x,-| 30,100, 500 [—10,10] 0
fHl) =Y, (qu x ,-) 30,100,500 [-100,100] 0
fa(x) =max; {|x;|,1 <i<n} 30,100, 500 [—100,100] 0
£y =y [100 (i1 —2) 4 (xi — 1)2] 30,100, 500 [—30,30] 0
fo(x) =X, ([+0.5))2 30,100,500 [—100,100] 0
fr(x) = XL, ix* + random]0, 1) 30,100, 500 [—128,128] 0

Table A-2: Description of the standard multimodal benchmark functions.

Function Dimensions Range Jfmin

fox) = X1, —x;sin (\/H) 30,100,500 [—500,500] —418.9829 x n
Fo(x)=X/L, [x? — 10cos (27x;) + 10] 30,100,500 [-5.125.12] 0

fio(x) = —20exp(—0.24 /15" x2) —exp (L X7 | cos(2mx;)) +20+e 30,100,500 [—32,32] 0

Fi(x) = g Ty 2 — T cos (%) 1 30,100,500 [—600,600] 0

fi2(x) = 30,100,500 [—50,50] 0

Z f10sin (my;) +Y i —1)? [1+ 105in2(7ry,'+1)] +On—1)2}+
Y u(x;,10,100,4)

- k(xi—a)™ xi>a
yi =1+ Fu(x,a,k,m) = O(—a) <xi<a
k(—xi—a)" xi<-—a
fia(x) = 30,100,500 [—50,50] 0

0.1 {sin2(3nx.)+z;;1 (i — 1)% [1 4 sin?(3mx; + 1)] + (v, — 1)? [1 +sin?(27x,)] } +
Y u(x;,5,100,4)

228

Table A-3: Description of the standard fixed-dimension multimodal benchmark functions.

Function Dimensions Range fmin
—1
1 25 1
)= g4y, —1 2 —65,65] 1
f14() (500 2171 j+):?:1(x,-fa,‘,)6> [}
x b,z+b;x
fis(x) =X, {m—% 4 [-5,5] 0.00030
fi6(x) =4x%72.1x‘1‘+%x?+x1xz274x%+4x‘2‘ 2 [-5,5] ~1.0316
fi7(x) = (xr%x%%xl 76) +10(1— &) cosx; + 10 2 [-5.5 0398
fis(x) = [1 + 0 x2+ 1) (19— 14x; 4323 — 14x +6x1x2+3x§)] 2 [~2,2] 3
x[30-+ (2x1 = 312)7x (18 = 3241 + 124F + 483, — 3611, +27:3) |
2
fro(x) ==Xk ciexp (— X3, aij (x; — pij) 3 1,3] —3.86
. 2
fro(x) = =X ciexp (= X9 aij (x; = pij) 6 [0,1] -3.32
-1
i) =-x, {(X*ai) (X*ai)T‘FCi} 4 [0,10] ~10.1532
-1
fox)=-XL, {(X —a) (X —a)" + c,} 4 [0,10] —10.4028
-1
f3(x)=—¥1 {(X —a) (X —a))" + c,} 4 [0.10] ~10.5363

Table A-4: The characteristics of CEC2014 benchmark functions (U: Unimodal, M:
Multimodal, H: Hubrid, C: Composition)

Function Description Category Dimensions Fy,
Fl1 Rotated High Conditioned Elliptic Function U 30 100
F2 Rotated Bent Cigar Function U 30 200
F3 Rotated Discus Function U 30 300
F4 Shifted and Rotated Rosenbrock’s Function M 30 400
F5 Shifted and Rotated Ackley’s Function M 30 500
F6 Shifted and Rotated Weierstrass Function M 30 600
F7 Shifted and Rotated Griewank’s Function M 30 700
F8 Shifted Rastrigin’s Function M 30 800
F9 Shifted and Rotated Rastrigin’s Function M 30 900
F10 Shifted Schwefel’s Function M 30 1000
F11 Shifted and Rotated Schwefel’s Function M 30 1100
F12 Shifted and Rotated Katsuura Function M 30 1200
F13 Shifted and Rotated HappyCat Function M 30 1300
F14 Shifted and Rotated HGBat Function M 30 1400
F15 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function M 30 1500
F16 Shifted and Rotated Expanded Scaffer’s F6Function M 30 1600
F17 Hybrid Function 1 (N=3) H 30 1700
F18 Hybrid Function 2 (N=3) H 30 1800
F19 Hybrid Function 3 (N=4) H 30 1900
F20 Hybrid Function 4 (N=4) H 30 2000
F21 Hybrid Function 5 (N=5) H 30 2100
F22 Hybrid Function 6 (N=5) H 30 2200
F23 Composition Function 1 (N=5) C 30 2300
F24 Composition Function 2 (N=3) C 30 2400
F25 Composition Function 3 (N=3) C 30 2500
F26 Composition Function 4 (N=5) C 30 2600
F27 Composition Function 5 (N=5) C 30 2700
F28 Composition Function 6 (N=5) C 30 2800
F29 Composition Function 7 (N=3) C 30 2900
F30 Composition Function 8 (N=3) C 30 3000

Range [—100, 100]?

229

Appendix B: Statistical Results

Table B-1: Statistical Comparison of Enhanced CSA Variants against Basic CSA Across
Standard Functions F1-F23 Using Wilcoxon Rank Sum Test (+, -, = indicate superior,
inferior, and equivalent performance, respectively)

MRCSA vs CSA | ATCSA vs CSA | ECSA vs CSA
Function ; - -

P-value Sig. | P-value Sig. | P-value Sig.
Fl1 3.02E-11 + 3.02E-11 + | 3.02E-11 +
F2 3.02E-11 + 2.77E-01 = | 3.02E-11 +
F3 3.02E-11 + 3.20E-09 + | 3.02E-11 +
F4 3.02E-11 + 4.20E-01 = | 3.02E-11 +
F5 3.02E-11 + 296E-05 + | 3.02E-11 +
F6 3.02E-11 + 3.02E-11 + | 3.02E-11 +
F7 3.02E-11 + 3.63E-01 = | 3.02E-11 +
F8 3.02E-11 + 9.47E-01 = | 5.56E-10 +
F9 3.02E-11 + 1.09E-01 = | 3.02E-11 +
F10 3.02E-11 + 5.57E-03 - 3.02E-11 +
F11 3.02E-11 + 3.02E-11 3.02E-11 +
F12 3.02E-11 + 1.96E-01 = | 3.02E-11 +
F13 3.02E-11 + 1.39E-06 + | 3.02E-11 +
F14 8.15E-02 = 7.23E-01 = | 8.15E-02 =
F15 5.61E-01 = 4.05E-03 - 7.63E-05
F16 NaN = NaN = NaN =
F17 NaN = NaN = NaN =
F18 NaN = NaN = | 3.34E-01 =
F19 NaN = NaN = NaN =
F20 3.54E-09 - 4.04E-01 = | 2.24E-09 -
F21 2.08E-01 = 8.84E-01 = | L.5S6E-06 -
F22 1.68E-03 - 4.19E-02 + | 1.09E-07 -
F23 7.58E-04 - 7.20E-01 = | 227E-09 -

230

+ + + + + + + + + + + + + + + ~ +

cl-dicl 6099’1 cl-dITl <TI-HITT <S0-gyy'9 TI-HITT CI-dITT CTI-HITT CI-HITT TI-dITT TI-HITT CTI-FITT $9¢1000 1161¥0°0 OI-HE6'L NeN CI-dIct €cd
+ + + + + + + + + + + + + + + =~ +

CI-dITT S0-gyT’1 TI-HITT CTI-HITT LO-HST'T TI-H8I'T CI-HITT CTI-HITT CI-HICTT CTI-HITT TI-HITT TI-HITT 19SS00°0 STOTT00 60-HS8'S NEN CI-dIT1 A
+ + + + + + + + + + + + + + + =~ +

CI-HITT SOHLy'9 TIHITT TI-HITT +SE1000 TI-H9€Y CI-HITT TI-HITT CIHITT TI-HITT TI-HITT CTI-HITT 60€000°0 SO-dvE9 CTI-HITT NEN CI-91T1 12d
+ + + + ~ + + + + + + + + ~ + ~ +

60-dL6'Y 98€ICO'0 [11-H00't LO-HYCT'E €€L60°0 €81000°0 [1-H00'€ TI1-H00'€ 80-HIET SO-HLTT T1I1-H00'C 60-d8C'1 SO-HCS'S €0L916°0 6695000 I¥0TE0 90-HIET ocd
+ ~ + + + + + + + + + + ~ ~ ~ ~ +

cI-dict NEN CI-dITT TI-HITT 8692000 <CI-HITT <cl-dITT <CI-dI¢T CI-™HITT TI-dITT TI-HITT CI-9IT] NEN NEN NEN NEN cI-dict 61d
+ = + + ~ + + + + + + + ~ ~ + ~ +

CI-ALS' Y NEN CI-HITT CI-dITT NEN CI-ALSY T1-HS9'1T TI-HITT +8LT00°0 CI-HITT CI-HITT CTI-HITI NEN NEN CI-di1T1 NEN CI-dITT 814
+ =S + + ~ + + + + + + + ~ ~ + ~ +

CI-4dIT1 NEN CI-HLS Y TI-HITT NEN €CS180°0 11-99L°S TI-HITT 80-HOL'T TI-HITT CI-HITT TIHITI NEN NEN CI-HLS Y NEN 79L200°0 L1A
+ =S + + ~ ~ + + ~ + + ~ ~ ~ + ~ +

11-969°1 NEeN 01-968°I TI-HITT NEN NEN LO-HI88 CTI-HIT'T NEeN 60-468°l CTI-HIT'T NEN NEN NEN CI-dIct NEN 0-460°¢ 914
+ + + + + + + + + + + + + + + ~ +

cr-dict cr-dg8rr ci-dict c¢I-d491't <r-g1ct c¢I-dicl cl-dicl <TI-dITl CI-9IcT ¢l-d40¢'l CTI-HITT TI-dI¢T CI-™9ITT <¢I-9¢I’l CI-"ITT 10-gve’e CI-HICTI Sid
+ + + + + + + + + + + + ~ + + ~ +

€I-gvs'e 90-dI¢’S CTIHITT €I-dI9v 660100 CTI-HOTT SO0-H9T'T OI-HC8'I <TO-HSI'T SO-HIE9 CTI-HISY €O-HLE'T NEN €0-dI1¢’1 CTI-HITT NEN 11-369°S vid
+ + + + + + + + + + + + + + + + +

I1-920°¢ TI1-920°€ T11-dc0'€ TI1-HL8'C TI-HC0'€ TI1-HZO'€ SO-HL8'T 60-H0T'€ TI-HEE'€ T11-HCO'€ TI1-HCO'E€ TI1-HZO'C LOHEL'T TI-HTO'C€ TI-HCO'C TI1-HTO'€ TI-HTO'E eld
+ + + + + + + + + + + + + + + + +

11-920°¢ 11-920°¢ [1-H20°¢ TI-H00°¢ TI-H2O'€ TI-HZO'€ 60-H40S'€ OI-"HI9'l T11-d80% [11-H20'€ [1I1-d20€ 11-920°¢ [11-d20°¢ 11-H¢0°¢ [11-H20'¢ [11-d20°¢ T1-H20°¢ [qE|
- + + - - - - + - + + + + + + + +

01-dsI'¢ 11-9c0°¢ [11-dco'c CI-HITT <I-HITT TI-HITT TI-H9¢C 80-H6C'C CI-HITT ¢€0-d6v'I 11-H20'c 60-d¥C’l OI-HLy'€ 60-49C°6 [11-HCO't [1-H20¢ [I-H20'€ 114
- + + - - - - + - - + - + + + + +

CI-ALS'L T1-920°€ 11-dco'c T11-d4€9'Cc <I-HITT TI-dSI'e [11-dc0'¢ [1I1-HL0v CI-HITT CTI-dcL'l T11-H20'c 11-480°C OI-HE8Yv [I1-H20'€ [1I1-HCO't [1-H20€ [I-HZO'€ o1d
- + + - - - - + - + + - + + + + +

11-9¥¥'1 T1-920°¢ [11-dc0'¢ CTI-HITT CI-HITT CTI-HITT CI-FITT T11-H69'¢ CTI-HITT LO-HPE9 11-HCO'€ CTI-HITT TI-HC0'€ T1I1-H20'€ [1I1-HCO'C T11-HC0'€ TI-HTO'€ 64
+ + + + + + + + + + + + + + + + +

I1-469°C T1-H69C T11-H69'C T11-H69'C T1-H69CT T1I1-H69'C 90-H6¢'T T11-H69C 60-HE9tv T11-H69'C T11-H69'C I11-H69C TI-H69T T11-H69C I11-H69C T11-H69TC TI-H69C 84
+ + + - ~ ~ ~ + - + + + + + + + +

LLE900'0 T1-HT0€ T1-HcC0'€ 90-H98'l 188ISTO ILI90L0 LIST8Y'0 60-dvv'C $0-HIOC 60-H9C'6 11-HCO't SO-HSI'8 TI-HC0'€ [I-H20'€ [1I1-HCO't [1-H20€ [I-HT0'¢ L4
+ + + + + + + + + + + + ~ + + + +

[1-920°¢ 11-420°¢ [11-d20°¢ [TI1-d10'¢ T1I-H20'¢ [II1-H20't 90-d6¥'C O0I-HL8C 0I-H68'8 [[-HC0'¢ [I-H20't [1I1-HC0't <TO-H8Y'L [1I-HCT'S [TI-HC0'€ [11-HCO't [1-H20'€ 94
+ + + + + + + + + + + + + + + + +

[1-920°¢ 11-420°¢ [T1-920°¢ [1I1-°dy¥'1 11-H20'€ [11-HC0't 60-d¥y'C 80-H6I'C T11-H80'F [I-HTO'€ [1I1-HCO0'€ [1I-HCO't TI-HCO'€ 1I-HCO'€ TI-HC0'€ 1I1-HCO'E [1-HT0'€ Sd
- + + - - - - + - - + + + + + + +

I1-920°¢ TI-920°€ T11-dC0'€ T1I1-H20'¢€ TI-9C0'€ TI1-HZO'C€ [TI-HCO'€ OI-H9L'6 TI-HZ0'€ 11-dC0'€ T1I1-HZO'€ OI-dLS'S TI-HC0'€ TI1-HZ0€ T1I1-HCO'€ TI1-HT0'€ TI-HTO'€ d
- + + - - - - + - - + + + + + + +

LO-HIOE [1-H20'€ [T1-H20€ T1I1-H20'¢ 11-920°¢ T11-H20'¢ T1I1-HC0'€ O0I-9¢8'¢ [11-H20°¢ [TI1-H20'¢€ T11-HC0'¢ [TI1-H20'€ [TI-H20'€ TI-H20'€ [TI-H20'¢ [TI-H20€ TI-HZO'C €d
- + + - - - - + - - + - + + + + +

[1-dco'¢ 11-d20°¢ [11-dco't I1I1-Hco'c [11-9¢0°€ T1I1-H20'c [11-H20't OI-HLE'T TI1-H20'¢ [11-Hco't OI-H8¢'L [1I-H20'c TI-HC0'€ TI-H69'¢ [1I1-HCO't [1-H20€ [I-H0'¢ ol
- + + - - - - + - - + - ~ + + + +

[1-920°¢ 11-420°¢ [11-920°¢ [TI-910'¢ 1I1-dC0'¢ [11-HC0't [11-920'¢ OI-dL8C T1I1-H20'€ [I-H20'¢ [11-d20'¢ [1I1-dcC0't 10-d<v'v 11-HCO'€ [1I-HC0'€ 11-HCO't [1-H20'€ Id

OIHS OdN vdd \(0)4 SOH od jvsded ov OHH OMD VoS VoM VSS osd VAVI q4a Ive | wonouny |

suonouny ¢z -1 prepue)s SSoIoe SWLIOI[e JOYI0 "SA Y SDH! J0J SINSAI 1S3} WINSYULRT UOXOI[IA 7~ dqBL

231

+ + - - - - - + + + + + + - + - +

I1-920°¢ €0-9L0°6 T1-9¥9'T CTI-HITT SO-HPE'T SO-HCO'T TI-HC0'C OI-HIT'T TI1-H¢8C OI-dLy'€ T1-Hc0'€ T1-H¢0°€ 90-HEL'T OI-HEET 90-H6TT T1-HT0'€ T11-HT0'€ ¥10TDHD-0¢d
+ + + - - + - + - + + + + + + + +

I1-920°¢ 01-90T°T TI1-9C6'6 <CI-HITT $0-HEEy T11-H69'€ [1-HO0'C OI-HLS'S TI-HITT T1-H0L'9 [1-HC0'¢ T1-910°¢ [T1-d6€L 80-HCO'T TI-HCO'€ T1I-HC0C€ T1-d20'€ +I10COHD-6Td
- - - - - - - - - - - - - + - - ~

€0-H9€9 11-920°¢ I1I-HC0'€ CTI-HITT CI-HITT 11-920°€ CTI-HITT 11-9C0°€ TI-FITT T1-H69'€ SO-d91'€ $0-HS8I'C T1-9ve'e €0-HLTT TI1-920'€ TI-HC0'C T10-H6S'S ¥I0TDOHD-8TI
+ + + - - + - + - + + + + + + - +

[1-920°¢ OI-HC9v 11-dve'e CTIHITT CTI-HITT 90-H6T'T CTI-HITT TOHILT TIFHITT T1-dpe'e [11-920€ [1-H20'€ 60-d4SS'T TO-HTT'T T1I1-H20€ $0-dH6¥'S 11-HC0'C ¥10TDHD-LTd
+ + =~ + + + + + + + + ~ ~ + + ~ +

T1-go¥'6 11-469°¢ CTO-H9L'S CTI-HIT'Y T11-HE9'CT 80-H00'9 I11-HS6'CT T11-H469'C 11-d¥¥'1 OI-dCI'9 80-HC0'€ <CTO-HLS'9 TO-HI8'L 60-H9¥'S €0-HCE'T TO-HSS'9 TI-H20'€ +10TOHD-9Td
- + + - - - - - - + + + + + + + +

Y0-49SYy 11-90S'v 01-d60°1 CTI-HITT CTI-HITT CTI-HITI CTI-HITT €0-gyl'l CTI-HITT [1-920°¢ T1-9S1'8 €0-9$8°L O0I-d40T'T [I1-9C0°¢ [1-HC0°¢ [1-HC0°¢ 11-d20°¢ +10TDdD-STd
- + + - - - - - - - - ~ + + + + +

I1-9¢0°¢ 11-920°¢ TI1-HC0'€ <I-9ITT CTIHITT T11-H66'C T1-H00'€ TI1-HCO'€ T1-H06'C 60-4C0°t 90-HCE'C T10-dII'S [11-H20'€ 80-9S'T TI-HCO'€ TO-HETT [1-HC0'€ ¥I0COHD-¥Td
+ + + - - 5 - - - + + + + - + =~ +

I1-920°¢ 11-920°¢ $0-920°¢ CI-HITT CIHITT T10-HCS'T TI-HITT TI-HC0'€ TIFHITT 90-Hc0'€ [11-Hc0'€ T11-H¢0'€ T11-d86'+ +vO-HP0'6 T1-HC0'€ TO-HS8'L TI-HT0'C +I10TOHD-€Td
+ + + + + - + + + - + + + + + ~ +

90-9489°C 90-HE0'T 80-HOE'T [TI1-HZO'C +0-H9T'S €0-HIS'T 8O-HIECT T1-HC0'€ OI-H8L'T €0-d¥9v T11-466'8 OI-dCL9 TO-HIST SO-HEY'T 60-H98'1 T10-dHIL'6 TI-H80F +10TOHD-TTd
+ + - + + + + + + + + + + + + - +

I1-9¢0°¢ 11-9gvee 11-dp€’€ T11-920°¢ T1-H0S¥ T11-480v [1I-HCO'€ TI1-HCO'€ II-HC0'€ OI-d9%¥'T [I1-HC0'€ T11-920°¢ OI-HC9¥ 90-998'1 TI-HCO't SO-HSL'T TI1-HT0'€ ¥I0TOHD-1Td
+ + + + + + + + + + + + + + + - +

[1-420°¢ T1-d¢0°¢ [1-40L9 [1-d¢0°¢ [11-d¢0°¢ 11-H20°¢ 1I1-H20'¢ 1I-d20'¢ 11-d20°¢ [11-d20°¢ [1-d20°¢ [1-d20°¢ [1-9d20'¢ [1-920°¢ [1-920°¢ [1-920°¢ [I-H20'¢ #10TOHED-0Td
+ + + + + - + + + + + + + + + - +

IT-920°€ 20-99¢'t SO-HSE¥ T11-920°t 90-H88'8 T1-HT6'6 [I-HCO'E T1-HCO'€ II-HC0'€ 90-dCr'v [1-HC0'€ T11-969°¢ €0-HIE'8 +0-HSTT TI-HC0't 11-db€’c T1-H20'€ ¥I0COHD-614
+ + + + + + + + + + + + + + + + +

[1-9420°¢ T1-d¢0°¢ [1-d¢0°¢ T1-H¢0°€ 60-HL9'C TI-HTO'€ 1I-HT0'€ 1I-HZO'€ 1I-HT0'€ [1I-dC0€ [1-HC0C [I-9C0'C [I-920°C¢ 90-H8T'L [TI-HZO0'C TI-HZ0'C TI-HZ0'C ¥$I0TOHD-8Id
+ + - + + + + + + + + + + + + + +

IT-420°€ 11-90L'9 90-H6€'T T11-920°¢ [I-HC0'€ OI-HLS'S TI-HCO0'€ T1-9C0'€ T1-HC0'€ OI-HITT [1-920'¢ T11-920°¢ OI-dLS'S 80-H9S'T TI-HCO'€ T1I1-HC0€ T11-d20'€ +I0COHD-LTA
+ + + + ~ =~ + + + ~ + + + ~ + =~ +

€0-H9€'T 90-9€8°€ €0-H66'8 <TO-HZO'E 10-HYO'Y 10-H6V'S €O-HIET 80-HCO'C €0-H0S'E€ TO-HY9'9 80-HEE'T 80-H6E'T €0-HLLO T10-H88'8 TI1-HCOC T1I-HOSY T1-H86V ¥IOTOHD-91d
+ + + + + - + + + + + + = - + + +

[1-920°¢ OI-dLS'S TI1-920°€ TI1-H20°€ 90-HI9'T LO-HSLT 11-HZO'€ TI-HC0'€ TI1-920'€ LO-H8E'T [1-9420'€ [I-HC0'E <T0-d€0'9 €0-HIS'T TI1-920'¢ 60-H9Y'S 11-H20't€ #I10TDHD-SId
+ + = + + ~ + + + + + ~ ~ ~ + = +

OT-919°T T1-420°¢ <TO-9LI'8 TI-HTO'€ TO-H89'C CO-HYTL 11-4C0°€ TI1-HC0'€ 11-C0°€ €0-d9%'S T11-H20€ <T0-990°S TO-HIO'6 <TO-HIT'8 TI-HC0'C TO0-H996 I1I-HC0'C +I10TOHD-¥Id
+ + = + = ~ + + + + + = = = + ~ +

20-901°€ $0-L09 TO-HE9'6 11-HCOC 10-H9L'6 TO-HLS'9 90-HCZO'C [I-HZ0'C [I-920'¢ TO0-d98'F SO-H4C0'€ TO-H6L'6 TO-dEr'L TO-H66'S €O-HCI'T 10-dSTE 11-HC0°€ +10TDdD-€1d
- - + + ~ B + + + + + + ~ ~ + ~ +

C0-dST'e 10-9CS9 80-HEE'T €0-9C0'€ 10-HOTY €0-9C0°c SO-dH6v'S 1I1-HC0€ OI-d8L'T TO-HIS'T +0-4T0'€ €0-H66'8 <C0-H69'L TO0-H09'S +0-HCO't T0-HET'Y T1-HZO'C ¥I10TOID-CId
+ + + + - - + + + ~ + + + + + + +

11-986'¢ 80-dev'I 11-dPE’C T1-HC0'€ OI-HPE'T 90-°HvL'v [11-HCO'C T1-9CO'€ [1-HC0'C T10-9S¥'T [1-HC0'C T11-920°€ LO-HYO'L +O-d8L'1T TI-HCO't 11-HC0C€ T11-HT0'E ¥I0TOHD-T1d
+ + + + - - + + + - + + + ~ + + +

0T-9e€€'T $0-H10°C €0-H0¢'T [T1-d20'€ T11-480+ TI-d6¥'S OI-HOT+H T11-dC0°€ T11-469'¢ 90-HL0'C TI1-H20'€ 60-H0T'€ ¥O-HLI'T T10-H60'T TI-HCO0'€ TI1-H20'€ TI-HZ0'€ +10TOHD-01d
+ + + + + + + + + - + + + + + + +

IT-920°€ 60-969°T T11-HC0'€ TI1-920°€ 90-H6I'l <TO-H8CTT II-HCO'C TI1-HCO'C II-HC0'€ VO-HL6'C T1-HCO'C TI1-9C0°€ LO-HES'6 SO-HO6'L TI-HCO'E T11-9C0°€ T1-HTO'E ¥10TOHD-6d
+ + + + - - + + + + + + + + + + +

[1-420°¢ TO-d8¢' [1-dC0°¢ [1-d20°¢ O0I-HL9C 60-H981 [1I-HC0'¢ 11-HC0€ 11-d20°¢ +0-d80°S [1-dC0C [I-dve’c 80-H69F TO-HO9'I [1-HZ0'C €0-d6¥'6 [1-H20't +107DdD-8d
+ + + + + + + + + + + + ~ ~ + ~ +

I1-9¢0°¢ 11-920°¢ TI-HC0'€ T11-920'¢ [I-HCO0'€ TI1-9CO'€ [I-HC0'€ TI1-HCO'€ [1I-HC0'€ T1-9C0'€ [1-HC0'€ T11-920°¢ 10-HE8'C <TO-d8F'L TI-HCO'E 10-H9S'€ T1-HC0'€ ¥I10TOAD-LA
- - + + - - + + + - + + - - + + +

80-40T'T [1-40T'€ 60-96T'1 [1-94C0°¢ [11-dpE'c [1-HC0'C [11-dSI'8 [1-HC0'¢ 11-dC0°€ I1-d¢0'€ T1-H0Sv OI-H60'T 80-HSE'E 80-HILO T1I-HZO'C 80-HIOO I1I-HCO'C #I10TOID-9d
+ + + + + + + + + + + + + + + + +

I1-9¢0°¢ 11-9d6¥'S TI-HC0'€ T1-920°¢ $0-HCO'€ SO0-HTO'€ [I-HC0'€ TI1-HCO'€ 80-HCO'€ T11-9C0'€ [I1-HC0'€ T11-920°¢ SO-HOTY T1-920°€ T1I1-HC0'€ T11-920°€ OI-d19% ¥102DAD-Sd
+ + + + + + + + + + + + + - + - +

I1-920°¢ OI-9L¥'€ T1-920°¢ TI-HC0'C LO-HOTT SO-HLE'E TI-HCO'C TI-HCO'C TI1-HC0'€ TI1-9SI'8 TI1-HC0'€ T1-H69'¢ €0-H90'T <TO-HSI'E [I1-HCO'C TOH6EE TI1-H0EC ¥I0TOHD+d
+ + + + + + + + + + + + + - + - +

I1-420°¢ 01-9dLS'S TI-HZ0'€ T11-920°¢ 60-HSS'T T1-HZO'€ [I-HZ0'€ TI1-H20'€ TI-HC0'€ T1-920°€ [1-H20'€ T11-920°¢ [1-HC0'€ LO-HLO'T TI-HZO'C T1I-HC0C€ T1-H20'€ ¥I10TOHD-€d
+ + + + + + + + + + + + + + + - +

I1-9¢0°¢ 11-920°¢ TI-HC0'€ T1-920'¢ TI-HCO'€ TI1-92O'€ [1I-HCO0'€ TI1-HCO'€ [1I-HC0'€ T1-9C0'€ [1-HC0'€ T1-920°¢ €0-HIE'8 +0-HOL'L TI-HC0't SO-HEI'T T1-HT0'E ¥I10TOID-Td
+ + + + + + + + + + + + + - + + +

[1-920°€ T1-H4L09 CTO-HTT'T [1-H20'€ LO-HL'T OI-HI9T [TI1-HZO'€ [I1-HZ0'C [1-920°€ [I-H6¥'S [1-920°€ [1-H20'€ LO-HO9'T 9O0-HII'T TI-HZ0'C [I-HZO'C [I1-HC0'C +¥I10TOHO-1d

OIHS OdIN vdd vyov SOH od vsde) ov OHH OMD AN VoM VSS 0OSsd VAVI qd Ivd 7 uondunj

NS 189} $10ZDHD UO SWYILIOT[R IO SA ST J0J SINSAT }S9) WNSYULI UOXOJ[IA :€-4 d[qeL

232

Table B-4: Statistical Comparison of Enhanced CapSA Variants against Basic CapSA
Across Standard Functions F1-F23 Using Wilcoxon Rank Sum Test

) MCapSAL1 vs CapSA | MCapSA2 vs CapSA | MCapSA3 vs CapSA
Function P-value Sig. P-value Sig. P-value Sig.
F1 9.94E-01 = 3.26E-01 = 4.73E-01
F2 1.45E-01 = 5.83E-03 - 1.02E-01
F3 4.64E-03 - 1.52E-03 - 3.39E-02
F4 8.77E-01 = 3.40E-01 = 7.96E-01 =
F5 1.86E-01 = 9.07E-03 + 2.27E-03 +
Fo6 7.28E-01 = 2.40E-01 = 5.11E-01 =
F7 7.06E-01 = 2.58E-01 = 7.96E-01
F8 9.47E-01 = 1.67E-01 = 7.06E-01 =
F9 NaN = NaN = NaN
F10 3.45E-02 - 2.38E-03 - 3.51E-02
F11 NaN = NaN = NaN =
F12 1.68E-03 + 2.68E-04 + 4.03E-03 +
F13 6.52E-01 = 7.62E-01 = 2.12E-01 =
F14 9.23E-01 = 8.76E-02 = 6.67E-02 =
F15 1.02E-01 = 1.85E-08 + 1.86E-09 +
F16 2.36E-11 + 2.74E-11 + 2.46E-11 +
F17 6.67E-11 + 1.71E-10 + 2.21E-10 +
F18 8.14E-11 + 8.14E-11 + 1.20E-10 +
F19 2.23E-09 + 8.10E-10 + 2.15E-10 +
F20 7.09E-08 + 7.66E-05 + 3.01E-07 +
F21 1.56E-02 + 2.19E-08 + 2.44E-09 +
F22 2.12E-01 = 1.86E-09 + 7.09E-08 +
F23 8.24E-02 = 2.02E-08 + 2.57E-07 +

Table B-5: Statistical Comparison of Enhanced CapSA Variants against Basic CapSA
Across CEC2014 Suit Using Wilcoxon Rank Sum Test

) MCapSA1 vs CapSA | MCapSA2 vs CapSA | MCapSA3 vs CapSA

Function P-value Sig. P-value Sig. P-value Sig.
F1-CEC2014 | 6.05E-07 + 1.41E-09 + 1.07E-09 +
F2-CEC2014 | 2.15E-10 + 3.34E-11 + 3.02E-11 +
F3-CEC2014 | 3.35E-08 + 3.02E-11 + 4.98E-11 +
F4-CEC2014 | 1.17E-09 + 1.33E-10 + 5.49E-11 +
F5-CEC2014 | 1.67E-01 = 7.66E-05 + 1.25E-04 +
F6-CEC2014 | 1.11E-04 + 1.78E-10 + 1.33E-10 +
F7-CEC2014 | 5.49E-11 + 3.02E-11 + 3.02E-11 +
F8-CEC2014 | 9.26E-09 + 1.61E-10 + 4.98E-11 +
F9-CEC2014 | 6.52E-09 + 1.78E-10 + 8.99E-11 +
F10-CEC2014 | 7.73E-02 = 4.35E-05 + 1.50E-02 +
F11-CEC2014 | 4.71E-04 + 8.84E-07 + 9.03E-04 +
F12-CEC2014 | 6.57E-02 + 1.17E-03 + 4.71E-04 +
F13-CEC2014 | 7.39E-11 + 3.02E-11 + 3.02E-11 +
F14-CEC2014 | 1.78E-10 + 3.02E-11 + 3.02E-11 +
F15-CEC2014 | 2.02E-08 + 3.34E-11 + 3.34E-11 +
F16-CEC2014 | 1.53E-05 + 2.03E-09 + 1.55E-09 +
F17-CEC2014 | 2.53E-04 + 5.00E-09 + 2.39E-08 +
F18-CEC2014 | 2.20E-07 + 4.08E-11 + 3.34E-11 +
F19-CEC2014 | 3.83E-06 + 4.31E-08 + 1.87E-07 +
F20-CEC2014 | 1.17E-04 + 1.25E-07 + 5.57E-10 +
F21-CEC2014 | 8.56E-04 + 7.22E-06 + 7.04E-07 +
F22-CEC2014 | 4.98E-04 + 9.26E-09 + 9.26E-09 +
F23-CEC2014 | 3.99E-02 - 1.66E-02 - 1.12E-01 =
F24-CEC2014 | 6.52E-01 = 5.89E-01 = 3.04E-01 =
F25-CEC2014 | 3.55E-05 - 6.77E-03 - 1.49E-02 -
F26-CEC2014 | 6.04E-08 + 6.73E-10 + 4.35E-11 +
F27-CEC2014 | 2.13E-05 - 1.83E-04 - 3.76E-04 -
F28-CEC2014 | 5.01E-02 = 2.17E-01 = 6.25E-02 =
F29-CEC2014 | 4.21E-02 + 2.38E-03 - 1.09E-01 =
F30-CEC2014 | 6.79E-02 = 7.96E-01 = 4.83E-01 =

233

Al (A glaill By Jad) 3 gal g B _Sive Cdlidia ;ALY Cila)) gAd) o ghad
Jladl) pmadll

JAUS (g0 daa) ild salae)
uaild‘

Slae DA (e Bl Jelill Cpraall il Ja 3550 <l 50 (e Capuadl 1S3 Cila)) s 2a

o Ayl 52 (CSA) Qladl Simg e)l sa @l b Ly cibiaj) sadl o8 (b @lld aa s Al Cillanll
Al Jlal Y sl pa sty 5 Ciad) Ay mlidil Jie Alialia 3 58 e i3 ((CapSA) dadi 50 52l
Aa) 5 e gane po Ay Jalinil) LgiSay Can by 3) sl 038 (ga A il o)y sha) A 5 k) 028 Chngs
Szl 401 aladinl ga Gle)l sall o3 Caeadl L23LEN Cadlul) aal 3ed Al 5 4 el el COISEL (g
zasar i) el o3 G Gy . Saall & (e aall aa) dlee (U g gl e dailad 5 o S50
S ¢ 3ally Capali Aliua 5 3 g A e gana) OISl i oy i (2508 Gl ST aal)58l

485 Cladl jis) 435 CapSA 5 CSA o da el clipad) dadii ol) S8 o) 3al) G sasiall 5
A5t e ECapSA 5 ECSA legde il cagio it (yfians skt) oo Lo chapan Jds ol e 5
Luasy 253l ¢ IECapSA s IECSAL 5 ¢ 3all o allf 23 g (pania il o3 e & elld e 5500
Sl gl 138 Congy AR a5 (Sl g gl 4)) lagill o 2 USalinn 3 yagdl ¥ aee J0a5 48S55 50
ARl da i) o 3aill ool a5 Jall) Caall ol 508 s Sadl e Al dpagdanll o Maill 358 5 sla3)
Dsmall 4a 5 gpanll DISEN Cy 3 Jed Alee il A6) A8laYU diiba af QI Al) Al 53
IR (e ds yiaal) zilail) dsa (e (33831 o3 LS ilina jall 48 6 e gad Andal g eBadmtlal) Aial) il g pladdnly
Of A el) & yedal 385 Aaal) g Apaliil) A0V el Glae)l 8 e drl 5 Ao sene an Ll
ST il 53 Lae ¢ SLEAY) s alana Al Ll plaa) Lo (3585 CapSA 5 CSA (e dhusall feusil
& e e mal g JS8 < i FECapSA ol dassal)) < jelal cdlly) AiLaYl A8 5 sa g 38

Aglead) Cliplaill (e de sile de sana

234

