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Accurate classification of logos is a challenging task in image recognition due to variations in logo size, 
orientation, and background complexity. Deep learning models, such as VGG16, have demonstrated 
promising results in handling such tasks. However, their performance is highly dependent on optimal 
hyperparameter settings, whose fine-tuning is both labor-intensive and time-consuming. Swarm 
intelligence algorithms have been widely adopted to solve many highly nonlinear, multimodal 
problems and have succeeded significantly. The Hunger Games Search (HGS) is a recent swarm 
intelligence algorithm that has shown good performance across various applications. However, the 
standard HGS still faces limitations, such as restricted population diversity and a tendency to get 
trapped in local optima, which can hinder its effectiveness. In this paper, we propose an optimized 
deep learning architecture called EHGS-VGG16 designed based on the VGG16 model and boosted 
by an enhanced Hunger Games Search (EHGS) algorithm for hyperparameter tuning. The proposed 
enhancement to HGS involves modified search strategies, incorporating the concepts of ”local best” 
and a ”local escaping mechanism” to improve its exploration capability. To validate our approach, the 
evaluation is conducted in three folds. First, the EHGS algorithm is evaluated through 30 real-valued 
benchmark functions from the IEEE CEC2014 suite. Second, a custom-developed VGG16 model is 
tested on the Flickr-27 logo classification dataset and compared against state-of-the-art deep learning 
models such as ResNet50V2, InceptionV3, DenseNet121, EfficientNetB0, and MobileNetV2. Finally, 
EHGS is integrated into the VGG16 model to optimize its hyperparameters. The experimental results 
show that VGG16 outperformed the other counterparts with an accuracy of 0.956966, a precision of 
0.957137, and a recall of 0.956966. Moreover, the integration of EHGS further improved classification 
quality by 3%. These findings highlight the potential of combining evolutionary optimization 
techniques with deep learning for enhanced accuracy in log classification tasks.
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Computer vision is a cutting-edge technology that aims to enable artificial systems to extract valuable 
information from images1. It is an important part of artificial intelligence (AI), used across various sectors such 
as agriculture for studying crops and managing pests2; business, by enhancing customer experiences through 
face recognition and emotion analysis3; and healthcare, advancing medical diagnostics and improving patient 
care4. Furthermore, computer vision is a game-changer for companies in brand management and marketing. 
Furthermore, computer vision is a game-changer for companies in brand management and marketing. It excels 
at identifying images and detecting logos. This gives them powerful tools to effectively assess market trends and 
monitoring their brand’s presence.

Classification of logos is an important task in computer vision. This particular technique entails the process 
of searching for and identifying logos within images or videos5,6. The aim is to automatically detect the presence 
of logos and, for the purposes of classification, identify which brand or organization each logo belongs to. 
Logo classification plays a significant role in diverse applications, such as copyright protection (e.g., detecting 
unauthorized use of logos)7, placing targeted advertisements (e.g., showing relevant ads based on identified 
logos), brand information retrieval (e.g., gathering details about brands through their logos)8, brand monitoring 
on social media (e.g., tracking the brand presence and interactions on platforms like Facebook and Instagram)9, 
augmented reality enhancements (e.g., implementation of logo recognition in augmented reality experiences to 
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provide more context)10, and traffic management (e.g., detection of logos on vehicles for traffic management and 
analysis)11. These practical applications ensure the proper recognition of logos will allow businesses to handle 
their brand effectively, defend their property, and bring forth content that is targeted and meaningful.

The classification of logos is a challenging task due to the wide variety of designs with different colors, sizes, 
orientations, and complex backgrounds12. These challenges are further compounded by occlusion, where parts 
of the logo are hidden, and distortion due to varying camera angles or compression artifacts. Additionally, the 
presence of inconsistent illumination conditions can confuse shape and color recognition, making it difficult to 
accurately identify logos in real-world scenarios. Existing logo classification methods often struggle to generalize 
well in these conditions, leading to reduced accuracy and performance in diverse environments. Therefore, 
scholars are actively researching solutions to overcome these obstacles13. Earlier methods, based on hand-crafted 
features like scale-invariant feature transform (SIFT) and speed-up robust features (SURF), were once popular 
for logo classification. However, these approaches have proven insufficient to address the complexities of modern 
logo designs, which vary widely in color, shape, and size.

To address these challenges, researchers are now focusing on machine learning (ML) and advanced 
deep learning (DL) methods6,14,15. Utilizing neural networks and large training datasets leads to significant 
performance enhancements. DL is a subfield of ML in the AI domain. It is concerned with algorithms that 
mimic the structure and function of the human brain in analyzing data and creating patterns for use in decision-
making. For this purpose, DL comprises a multi-layered structure of algorithms called neural networks. Recently, 
DL has become one of the most promising techniques for solving classification problems. Deep learning-based 
techniques have become popular in signal processing, computer vision, and computer-aided diagnosis (CAD). 
The four significant architectures of deep learning networks are Convolutional Neural Networks (CNNs), 
Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and Recursive Neural Networks 
(RvNNs)16. One of the most popular methods for information classification based on DL techniques is CNN.

CNNs are a unique class of neural networks used mainly for analyzing digital images17. They are widely 
known for their ability to automatically extract hierarchical features from images, making them effective in 
various computer vision tasks, including logo classification. CNNs excel in various visual tasks, including 
object detection, image classification18, facial recognition19, generation of textual image descriptions20, and 
image segmentation21. The first CNN was introduced by Lecun et al.22 and was used for recognizing numbers. 
More advanced CNN models, such as AlexNet23, VGG24, GoogleNet25, ResNet26, DenseNet27, and SENet28, 
have furthered the evolution of CNN architectures and set new benchmarks in computer vision tasks. Recent 
innovations in CNN architecture often address specific limitations in older models. For instance, ResNet proposed 
shortcut hyper-connections to overcome the issue of vanishing gradients that arise with increasing the number 
of layers in a CNN. However, despite their success, many existing deep learning models, including CNNs, lack 
robustness in handling variations in logo appearance and struggle to maintain high performance when logos 
are partially occluded or significantly distorted. Additionally, efficiently optimizing hyperparameters remains 
a major challenge, as traditional techniques like grid search and random search are often time-consuming and 
inadequate in finding globally optimal solutions for complex models. These gaps motivate the need for a more 
robust and adaptable solution, such as the proposed EHGS-VGG16 framework.

However, the effectiveness of any CNN model is greatly influenced by factors like the number of convolutional 
layers and filters, as well as the filter size, batch size, learning rate, the choice of activation function, and more. 
These parameters are referred to as the CNN hyperparameters29. The values of the hyperparameters determine 
the success rate of a CNN in solving a particular problem. It is important to note that there is no single CNN 
architecture that can consistently produce satisfactory results for all problem instances. Particularly, finding 
the optimal values for hyperparameters in a specific problem is an NP-hard task and a major challenge in the 
field of CNN1. There are two popular methods for hyper-parameter optimization: grid search and random 
search30. The grid search method involves testing all possible hyperparameter combinations, which is efficient 
for a small set of hyperparameters but can become time-consuming with a larger number. Searching randomly 
is quicker and more efficient, as it tests various hyperparameter combinations randomly. Nevertheless, it fails 
to learn from previous attempts and might occasionally duplicate the same search1. In specific, conventional 
hyperparameter tuning techniques, such as grid search and random search, are frequently criticized for their 
extensive time consumption and substantial domain knowledge requirements. This calls for investigating more 
effective alternatives that can lessen these limitations. Since the optimization of the CNN hyperparameters falls 
within the category of NP hard problems, using metaheuristic-based techniques could yield satisfactory results.

Metaheuristics (MHs) are a class of stochastic algorithms that aim to find near-optimal solutions within a 
reasonable amount of time31. Although these methods do not always guarantee the optimal solution, they are 
particularly useful in dealing with intricate problems where an exhaustive search is impractical. The basic idea 
behind MHs is that they generate a random solution or a set of random solutions (known as a population) and 
then iteratively improve these solutions by applying a set of mathematical operators until a stopping criterion 
is satisfied. Population-based techniques are a popular type of MHs that have gained significant attention in 
recent years due to their successful performance32. The key advantage of population-based MHs is that they 
balance the exploration of the search space to find promising areas (global search) with the exploitation of 
the nearby regions around the solutions found during the exploration phase (local search). MHs are general-
purpose algorithms that can be adapted to handle a wide range of optimization problems. Over the years, MHs 
have been extensively used in various domains, including scheduling problems, image processing, data mining, 
engineering design, and more33. According to Mirjalili and Lewis34, population-based MHs can be classified 
into four main types according to their source of inspiration: physics-based, human-based, evolutionary-
based, and swarm intelligence (SI) algorithms. Examples of these categories include the gravitational search 
algorithm (GSA), teaching-learning-based optimization (TLBO), genetic algorithms (GA), and particle swarm 
optimization (PSO).
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Swarm intelligence (SI) algorithms are well-known for their effective performance in handling optimization 
problems. These algorithms take inspiration from the collective behavior of various species like bees, wasps, ants, 
fish, and birds35,36. The social behaviors of various species, particularly in activities like prey hunting, cooperative 
food-finding, and swarm leadership, serve as inspiration for SI algorithms. Novel nature-inspired MHs have 
recently emerged, integrating familiar natural processes into numerical models. The Hunger Games Search 
(HGS) is an SI-based algorithm that draws inspiration from the actions and choices made by animals in times of 
food scarcity37. HGS possesses several distinctive traits. It’s easy to use and runs quickly38. This system includes 
adaptive and time-varying mechanisms, which help it effectively address challenges related to multi-modality 
and local optima. Moreover, HGS implements a ”hunger ratio” that impacts the search range, enhancing 
adaptability and enabling adjustments according to the algorithm’s performance. These characteristics contribute 
to HGS being a versatile and robust search algorithm. However, the standard HGS still has its limitations, such 
as restricted population diversity and a tendency to become trapped in local optima38. According to39, these 
difficulties are particularly evident in multi-dimensional optimization problems. To address these constraints, 
researchers have enhanced the HGS by integrating new modified search strategies and pairing it with other 
optimization techniques to boost its performance38,40. As per the No Free Lunch (NFL) principle41, no one 
optimization strategy can be universally the most effective for all optimization problems. Therefore, there is still 
room for additional research and analysis of incorporating effective MS-based methods.

This study aims to propose an optimized deep learning framework, called EHGS-VGG16, which integrates 
the enhanced Hunger Games Search (EHGS) algorithm with the VGG16 model for accurate and effective logo 
classification. The objective is to develop a robust and adaptable pipeline capable of identifying and classifying 
logos from diverse sources, even in challenging scenarios such as occlusion, varying orientations, and complex 
backgrounds.

To achieve this objective, the study seeks to answer the following research question: Can the integration of 
the EHGS algorithm with the VGG16 deep learning model improve logo classification performance, particularly 
under difficult conditions such as occlusion, size variability, and complex backgrounds?

The classification pipeline of the EHGS-VGG16 model involves multiple stages: preprocessing, object 
proposal generation via selective search, and hyperparameter tuning using the EHGS algorithm. We make use of 
CNNs, specifically the VGG-16 model, which is well-known for its profound capacity to recognize hierarchical 
structures and spatial properties in images. Through the use of pretrained weights and a deep architecture, our 
method improves the accuracy and resilience of the VGG-16 model. The EHGS-VGG16 model was validated 
using the Flickr-27 dataset and compared against state-of-the-art deep learning models, including ResNet50V2, 
InceptionV3, DenseNet121, EfficientNetB0, and MobileNetV2. The results demonstrate that EHGS-VGG16 
achieved an impressive 98% accuracy in logo classification, surpassing previous models and setting a new 
benchmark in the field

•	 Introduction of an optimized deep learning framework for efficient and accurate logo classification using the 
VGG-16 model.

•	 Development of a comprehensive classification process that involves data preparation, object proposal via 
selective search, and optimizing key parameters.

•	 Implementation of an enhanced version of the HGS (EHGS) for hyperparameter optimization, combining the 
concepts of ”local best” and ”local escaping mechanism”, to improve exploration and diversity in the search 
process.

•	 Validation of the proposed model’s performance on the Flickr-27 dataset demonstrated superior accuracy and 
efficiency compared to other recent deep learning models and state-of-the-art methods, with a remarkable 
accuracy of 98%.The EHGS-VGG16 framework goes beyond state-of-the-art by addressing key challenges in 
logo classification, particularly robustness in varying conditions like occlusion and distortion, while efficient-
ly optimizing hyperparameters. The proposed method leverages the advanced search capabilities of the EHGS 
algorithm. The EHGS improves both the exploration and exploitation phases of the search process, enabling 
the model to escape local optima and achieve superior classification accuracy in challenging scenarios.

The structure of the paper is organized as follows: “Review of related works” section explores recent research 
efforts on DL-based logo classification and the advancements in the HGS. The explanation of the techniques 
being employed is provided in “Research background” section. “Proposed methodology for enhanced logo 
detection” section offers an in-depth explanation of the proposed methodology. Section “Experimental results 
and simulations” section delves into the experimental results of the proposed approach. The work is summarized, 
and future research prospects are discussed in “Impact of EHGS on hyperparameter tuning” section.

Review of related works
This section examines research related to our study, organized into three main parts. “Advances in logo 
classification with deep learning” section explores advancements in DL-based logo classification, focusing on the 
difficulties associated with this area. “Metaheuristic-based optimization for deep learning and machine learning 
models” section investigates the use of MHs for fine-tuning hyperparameters in DL models and the recent hybrid 
approaches that combine MHs with machine learning across diverse applications. Finally, we explore innovative 
developments in HGS as a standalone contribution to optimization techniques in “Developed variants of the 
hunger games search” section.

Advances in logo classification with deep learning
Significant progress has been made in the field of logo classification with the use of DL methods, specifically 
CNNs. These developments have fundamentally changed computational models’ capacity to identify and classify 
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logos, which is a challenging task because of the vast range of logo designs and the different contexts in which 
they can be found.

Bianco et al.14 developed a novel logo recognition technique leveraging DL. Their method employs a two-
step pipeline: first, a logo region is proposed, and then a specialized CNN classifies the logo, even in cases 
where logos are not precisely localized. To assess the effectiveness of this approach, they conducted experiments 
using the FlickrLogos-32 database. Their study examined the influence of different data augmentation 
strategies (synthetic vs. real) and image preprocessing techniques on recognition accuracy. Furthermore, they 
systematically evaluated various training choices, including class balancing, sample weighting, and explicitly 
modeling non-logo areas (background class). The experimental results of the study prove that the suggested 
method works well and is better than other state-of-the art methods. The authors’ work contributes to advancing 
logo recognition by leveraging DL techniques and optimizing training choices to enhance performance. Another 
notable contribution is proposed by Oliveira et al.42. In their study, an automatic system for robust logo detection 
under unconstrained imaging conditions was introduced. The authors utilized Fast Region-based CNN (FRCN) 
and pretrained CNN models from the ILSVRC ImageNet dataset. They incorporated a selective search for 
window proposals and employed data augmentation techniques to enhance the logo recognition rate. The novel 
use of transfer learning and the ability to detect multiple logo instances were key features of their framework. 
Experimental results on the FlickrLogos-32 dataset demonstrated the promising performance of their models, 
surpassing state-of-the-art systems with handcrafted-based models.

Sahel et al.43 employed emerging DL techniques to tackle brand and logo recognition tasks by leveraging 
multiple modern CNN models. In their research, they used object detection models that had already been 
trained to make logo detection tasks easier, especially when they only had access to a few labeled training images 
that had been taken in real life. This way, they did not have to do a lot of work to classify the images by hand. 
The study utilized the widely used FlickrLogos-32 dataset, which contains real-world product images and serves 
as a common public dataset for logo detection and brand recognition. The evaluation of the models focused on 
both their efficiency in model creation and their detection accuracy. Experimental results demonstrated superior 
logo-detection outcomes.

To overcome the challenge of limited data, Su et al.44 proposed the Synthetic Context Logo (SCL) technique 
for training image generation. This method aims to augment limited labeled data and improve the performance 
of deep learning models for logo recognition. When evaluated against the faster R-CNN model, the SCL method 
demonstrated superior results. The researchers also introduced TopLogo-10, a novel dataset featuring the 10 
most prevalent logos from the clothing industry, which were captured in complex visual environments. This 
contribution advances the field of logo detection and provides a valuable resource for the future.

Table 1 provide an overview of recent studies in the field of logo classification.

Metaheuristic-based optimization for deep learning and machine learning models
The literature has extensively focused on optimizing the hyperparameters of neural networks11–24,29,30. However, 
the definitions of hyperparameters vary across these works, leading to different optimization objectives. Some 
studies adopt a narrow definition of hyperparameters, limiting them to parameters within each neural network 
layer and aiming to fine-tune existing neural networks without altering their overall architecture. In contrast, 
other studies take a broader approach, encompassing factors like the number and order of layers and more to 
create entirely new neural network architectures. This paper specifically focuses on the former approach. Fine-
tuning occurs after the neural network’s architecture is determined or when it is applied to a new dataset. For 

References Year Method Dataset Performance
45 2019 YOLOv3 VLD-3 76.6–98.8
46 2017 Faster R-CNN FlickerLogo 0.52–0.67
47 2019 OSLD - SDML BLAC and Flickr-32 84.5–90.9
48 2018 RetinaNet INbreast - GURO 86–1.00
49 2017 Faster R-CNN FlickrLogos mAP 51–66%
50 2020 Faster R-CNN and YOLOv2 WebLogo-2M mAP 36.8–46.9
51 2017 DenseNet16 -, ResNet101 -, VGG16 FlickrLogos-32 SportsLogos 0.37–0.46
52 2017 Scalable Logo Self Training (SLST) WebLogo-2M mAP 34.37%
53 2007 ANN and Support Vector Machine (SVM), Fisher classifier Tobacco-800 39.3–84.2%
54 2015 RCNN - FRCN - SPPnet Logos-18 test set Logos-160 test set 81.3–95.2%
5 2019 Faster R-CNN, SSD, YOLOv3 FlickrLogos-32, PL2K 0.565 mAP
14 2017 CNN FlickrLogos-32 Logos-32plus 0.1–95.8%
42 2016 Fast Region-based Convolutional Networks (FRCN) ILSVRC, FlickrLogos-32 mAP 54.5–73.74%
55 2018 Retina U-Net, Mask R-CNN, Faster R-CNN +, U-Faster RCNN, + DetU-Net LIDC-IDRI mAP 29–50.5%
44 2017 Faster R-CNN FlickrLogo-32 TopLogo-10 mAP 20.5–81.1%
12 2020 DenseNet-CNN FlickrLogo-32 92.80%

Table 1.  Overview of recent studies on logo classification, summarizing authors, publication year, methods, 
datasets, and key performance outcomes.

 

Scientific Reports |        (2024) 14:31759 4| https://doi.org/10.1038/s41598-024-82022-5

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


CNNs, relevant hyperparameters include those for convolutional layers (kernel size, number, stride, padding), 
pooling layers (method, stride, padding), and fully connected layers (number of kernels)29.

According to the literature, both evolutionary and swarm intelligence algorithms have numerous applications 
and implementations in the field of CNNs and computer vision. These methods were investigated and validated 
using a range of benchmark and real-world datasets. A group of researchers implemented fundamental meta-
heuristic algorithms and achieved promising outcomes. For example, The authors in56 proposed a hybrid 
model combining deep learning and metaheuristics for classifying strokes using EEG signals. They developed 
a CNN-BiGRU model for effective time series analysis and employed the Harmony Search (HS) algorithm for 
feature selection and Multiverse Optimization (MVO) for hyperparameter tuning. This approach addresses the 
limitations of CT and MRI in stroke diagnosis by offering a faster, cost-effective alternative. The model achieved 
a 99.991% prediction accuracy and demonstrated significant improvement over previous methods. Additionally, 
a cloud-based decision support system was developed for real-time diagnosis, providing timely and accessible 
results via SMS notifications. Another study proposed by Sawan et al.57 implemented three metaheuristic 
approaches-simulated annealing, differential evolution, and harmony search-to optimize CNNs for improved 
accuracy. The authors focused on enhancing CNN performance for classifying the MNIST and CIFAR datasets. 
Despite increased computation time, the metaheuristic-optimized CNNs demonstrated improved accuracy, with 
gains up to 7.14% compared to the original CNNs. This study addressed the limited exploration of metaheuristic 
strategies in optimizing CNNs and highlighted their potential for accuracy enhancement in deep learning tasks. 
Yamasaki et al.58 presented methods to automatically find optimal parameter settings for CNNs) using the 
evolutionary algorithm called Particle Swarm Optimization (PSO). Despite the vast parameter space (> 1020
), the authors experimentally demonstrated that better parameter settings could be found for the AlexNet 
configuration across five different image datasets. They also developed two candidate pruning algorithms to 
enhance the efficiency of the evolutionary process. Their experiments achieved 0.7–5.7% improvements over 
the original parameter sets in Caffe, while requiring only 2–4% of the processing cost compared to the naive 
PSO-based approach. Another novel PSO-based optimized CNN approach for image classification is proposed 
by Sinha et al.59. Given the challenge of parameter selection, the authors applied PSO to determine the best 
parameter combinations. They evaluated their approach on the CIFAR-10 benchmark dataset and a real-world 
roadside vegetation dataset. The results showed that their method efficiently explored the solution space and 
identified optimal parameters.

Recent advancements in deep learning have significantly impacted the diagnostic capabilities for COVID-19, 
particularly through the analysis of chest X-ray images. In this context, Hu et al.60 proposed a novel two-phase 
deep learning approach for real-time COVID-19 detection from chest X-ray images. The authors leveraged a 
deep CNN as a feature extractor and an Extreme Learning Machine (ELM) for classification. To enhance the 
stability and reliability of the ELM, the Chimp Optimization Algorithm (ChOA) was employed to optimize the 
input weights and biases. The effectiveness of the proposed approach was validated using the COVID-Xray-5k 
and COVIDetectioNet datasets, yielding accuracy rates of 98.25% and 99.11%, respectively. Notably, the training 
and testing times were significantly reduced, which supports the feasibility of real-time applications in clinical 
settings. Similarly, Cai et al.61 proposed a novel deep CNN model called DCNN-ChOA that utilized the ChOA to 
fine-tune the fully connected layers of the DCNN for COVID-19 diagnosis from chest X-ray images. Tested on 
COVID-Xray-5k and COVIDetectioNet, this model achieved 99.11% accuracy and demonstrated reduced false 
positive and negative rates. Additionally, Class Activation Mapping (CAM) was employed to highlight COVID-
19-infected regions in X-rays to boost interpretability. In a related study, Wang et al.62 employed a similar 
methodology but utilized the WOA to train the DCNN’s fully connected layers. This approach, when tested on 
the COVID-Xray-5k dataset, achieved an accuracy of 99.06%. In another notable study, Khishe et al.63 developed 
an adaptive CNN framework named OptiDCNN for early detection of COVID-19 from chest X-ray images. This 
model was intended to maximize diagnostic accuracy while maintaining a manageable model size suitable for 
real-time applications. OptiDCNN evolves the CNN architecture iteratively, optimizing hyperparameters and 
layer configurations through a nature-inspired optimization technique called biogeography-based optimization 
(BBO). The model begins with a basic CNN structure, expanding depth and complexity until optimal accuracy is 
achieved. This adaptive, phased approach leverages BBO to tune CNN hyperparameters like filter size, activation 
type, and pooling method at each stage. Using the COVID-Xray-5k dataset, OptiDCNN achieved a 99.11% 
accuracy rate, demonstrating high diagnostic performance while maintaining a compact network structure, thus 
supporting fast and reliable real-time applications in clinical settings.

Based on the reviewed studies, we can see that the direct application of basic metaheuristics has significantly 
improved the performance of CNN-based networks by finding the optimal set of parameters. However, basic 
metaheuristics often suffer from premature convergence and may fail with large, complex, high-dimensional 
problems, such as those involving very large neural networks. To address this issue, researchers have attempted 
to enhance the exploration and exploitation behaviors of basic metaheuristics by either modifying their 
mechanisms or hybridizing them with other techniques.

Some researchers have suggested hybrid or adaptive approaches for optimizing CNN. Leung et al.64 proposed 
a novel PSO model for radial basis function neural networks (RBFNNs) to address classification problems. The 
model used a linearly decreased inertia weight for each particle (ALPSO), automatically calculated based on the 
fitness value. The ALPSO algorithm was compared with various well-known PSO algorithms on benchmark 
test functions. Additionally, the orthogonal least squares algorithm (OLSA) combined with ALPSO was used 
to further optimize the RBFNN structure, including weights and controlling parameters. The integrated 
optimization model (MOA-RBFNN) was validated on various benchmark classification problems, demonstrating 
superior performance compared to conventional methods and recent approaches. Another interesting study in65 
addressed the challenge of plant disease classification using digital images. The authors developed an ensemble 
model of two pre-trained CNNs, VGG16 and VGG19, to diagnose plant diseases by classifying images of healthy 
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and unhealthy leaves. To overcome the difficulty of manually identifying optimal hyperparameters for CNNs, the 
orthogonal learning PSO (OLPSO) algorithm was used. Additionally, an exponentially decaying learning rate 
(EDLR) schema was applied to prevent CNNs from falling into local minima and to train efficiently. The study 
also addressed dataset imbalance using random minority oversampling and random majority undersampling 
methods. The results showed that the proposed model achieved competitive accuracy, outperforming other 
pre-trained CNN models like InceptionV3 and Xception, whose hyperparameters were selected using non-
evolutionary methods.

Another state-of-the-art method was presented in29. This study proposed a novel PSO variant, cPSO-
CNN, for optimizing the hyperparameter configuration of architecture-determined CNNs. The cPSO-CNN 
utilized a confidence function defined by a compound normal distribution to model experts’ knowledge on 
CNN hyperparameter fine-tuning, enhancing the exploration capability of the canonical PSO. Additionally, 
the scalar acceleration coefficients of PSO were redefined as vectors to better adapt to the varying ranges of 
CNN hyperparameters. A linear prediction model was also adopted for fast ranking of the PSO particles, 
reducing the cost of fitness function evaluation. Experimental results demonstrated that cPSO-CNN performed 
competitively compared to several reported algorithms in terms of both CNN hyperparameter optimization 
and overall computation cost. Recently, the authors in66 introduced the Adaptive Habitat Biogeography-Based 
Optimizer (AHBBO) to tune hyperparameters of Deep CNNs (DCNNs) for image classification tasks. Tested on 
53 benchmark optimization functions, AHBBO demonstrated improved performance and faster convergence. 
When applied to DCNNs (DCNN-AHBBO), it outperformed 23 well-known image classifiers on nine 
challenging classification tasks, reducing error rates by up to 5.14%. This algorithm outperformed 13 benchmark 
classifiers in 87 out of 95 evaluations, offering a high-performance and reliable solution for optimizing DCNNs 
in image classification.

In efforts to advance automated COVID-19 detection, Saffari et al.67 proposed a DCNN-FuzzyWOA model 
utilizing a deep CNN with the WOA enhanced by fuzzy logic to optimize training. The key innovation is the use 
of a fuzzy system to tune the parameters of the WOA used to train the DCNN, which allows for better balancing 
of the exploration and exploitation phases in the optimization. FuzzyWOA achieved a 100% accuracy rate with 
a processing time of 880.44 s on the COVID-Xray-5k dataset. It proved better performance compared to other 
DCNN training methods like DCNN-PSO, DCNN-GA, and LeNet-5.

In the context of real-time sonar image recognition, Yutong et al.68 proposed a study similar to Hu et al.60 
work but employed a fuzzy map-enhanced Slime Mould Algorithm (FSMA) instead. The fuzzy mapping are 
used to balance exploration and exploitation when tuning the weights and biases of an ELM classifier. This 
modification targeted the efficient detection of underwater anomalies, achieving a 2.11% improvement over 
the best benchmark models. Khishe et al.69 proposed a deep neural network fine-tuned using the Moth Flame 
Optimization (MFO) algorithm. Their approach customized MFO with different spiral motions to improve 
classification accuracy, addressing challenges like premature convergence and local minima entrapment. The 
modified model was validated on three sonar datasets, including the Sejnowski & Gorman, passive sonar, and 
active sonar datasets. The results confirmed a classification improvement of 1.6 to 2.1% over standard algorithms 
like ChOA, PSO,ALO, and HBO. The study underscores the value of integrating customized MFO with DCNNs 
for high-dimensional, real-time sonar classification tasks. To improve classification accuracy and address the 
challenges of fluctuating underwater sound propagation and ambient noise, Khishe et al.70 proposed a Variable-
Length Habitat Biogeography-Based Optimizer (VLHBBO) for tuning a DCNN in underwater sonar wave 
recognition tasks. This approach allows the model depth-and consequently the hyperparameter space-to adapt 
dynamically based on environmental conditions. Tested on experimental sonar data collected in the Persian Gulf 
and the Oman Sea, as well as benchmark datasets from the New Array Technology III program, the VLBBO-
DCNN achieved superior classification performance across eight evaluation metrics.

To enhance the classification accuracy and adaptability of deep learning models, Khishe71 developed a 
variable-length DCNN optimized by the WOA algorithm for complex image classification tasks across diverse 
contexts. This innovative approach introduced an Internet Protocol Address (IPA)-based encoding technique, 
allowing WOA to dynamically adjust the DCNN layer configurations to fit varying classification challenges. 
Tested on nine standard datasets, the IPA-based WOA (IPWOA) method outperformed twenty-three other 
classifiers in 81 out of 95 evaluations, achieving efficient network tuning with higher classification accuracy. In 
the context of electronic intelligence (ELINT) and electronic support measure (ESM) systems, Azhdari et al.72 
addressed the complexities of Pulse Repetition Interval Modulation (PRIM) recognition by developing a four-
phase model (DCNN-VBBO-ELM) to handle noisy PRI patterns. This approach utilizes a deep convolutional 
neural network (DCNN) for feature extraction, extreme learning machines (ELMs) for real-time pattern 
recognition, and a variable-length biogeography-based optimizer (VBBO) to optimize the network’s parameters. 
Tested on a custom dataset of five PRI patterns, the model achieved a 97.05% accuracy, outperforming traditional 
ELM-based models with a swift training time of 27 s for 50,000 images. In another interesting study, Bacanin 
et al.73 proposed a chaotic firefly algorithm with enhanced exploration to address global optimization problems 
by focusing on dropout regularization in DCNN to mitigate the overfitting problem. This novel approach was 
validated on benchmark datasets, including MNIST and CIFAR-10, and showed significant improvements over 
traditional methods. Table 2 provides a summary of reviewed studies on Metaheuristic-Based optimization for 
DCNN. For more metaheuristic-based optimization approaches for CNN parameters, please refer to this study74.

The novel research field successfully combines machine learning and swarm intelligence approaches and 
proved to be able to obtain outstanding results in different areas. For optimizing feature selection in complex 
image recognition tasks, Malakar et al.75 introduced a GA-based hierarchical feature selection (HFS) model 
to enhance handwritten word recognition. Their approach employs GA to reduce feature dimensionality to 
improve model accuracy and computational efficiency. The HFS model was tested on an in-house dataset 
of 12,000 Bangla word samples and achieved a 1.28% increase in accuracy with a 28% reduction in feature 
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dimension. Zivkovic et al.76 developed a novel hybrid metaheuristic approach that combines an improved 
firefly algorithm with XGBoost to optimize hyperparameters in network intrusion detection systems (NIDS). 
The authors enhanced the firefly algorithm with additional exploration mechanisms and hybridized it with 
the sine-cosine algorithm for more robust tuning. Experimental results on the NSL-KDD and UNSW-NB15 
datasets demonstrated improved detection accuracy and precision. Additionally, Zivkovic et al.77 explored the 
fusion of simple CNN with ELM to tackle IoT security issues. They applied a modified sine cosine algorithm 
(SCA) for tuning ELM hyperparameters and weights, using the SHapley Additive exPlanations (SHAP) method 
to interpret the model’s outcomes for security analysis. The experimental results demonstrated improved 
classification accuracy and robustness in IoT intrusion detection outcomes. Recently, an interesting study by 
Jovanovic et al.78 focused on advancing IoT security by employing a novel metaheuristic optimization method 
for feature selection, hyperparameter tuning, and training of ELMs. This approach addresses key hyperparameter 
optimization (HPO) tasks, specifically by adjusting the count of neural cells in the ELM’s intermediate layer and 
optimizing weight and bias initialization. The method was tested on a Windows 10 security dataset from the 
TONIot base, showcasing improvements in IoT security applications. These studies collectively highlight the 
advantages of combining swarm intelligence with machine learning to address complex optimization challenges, 
such as cybersecurity and IoT security applications.

In conclusion, the reviewed studies demonstrate the success of several metaheuristic techniques-including 
PSO, GA, WOA, SA, HS, SMA, BBO, MVO, and ChOA-when employed to optimize a DCNN model. These 
techniques have been effective in improving classification accuracy in a variety of applications, including 
medical diagnosis and image classification. However, according to the “no free lunch” theorem, no optimization 
technique performs better than another in every task. In specialized tasks such as logo classification, where 
distinctive elements are more complex and highly variable in size, design, and orientation, many existing 
algorithms struggle to generalize well.

Our study aims to address these gaps by using an improved HGS algorithm to optimize the VGG16 model 
specifically for logo classification, which, to our knowledge has not been applied in this domain before. By 
incorporating advanced search strategies into HGS, our approach aims to improve both the exploration and 
exploitation phases and better adapt to the complex feature spaces characteristic of logo data. This novel 
application of HGS to logo classification not only advances optimization strategies within deep learning, but also 
provides a specialized solution designed for the complex challenges of logo recognition tasks.

References Objective Model/approach Employed metaheuristic Results

Leung et al.64 RBFNN optimization for classification ALPSO with OLSA Adaptive Linear PSO 
(ALPSO)

Superior performance on benchmark 
classifications

Rere et al.57 Improve CNN accuracy on MNIST and CIFAR Metaheuristic-optimized 
CNN SA, DE, HS Accuracy improvement up to 7.14%

Yamasaki et al.58 Optimize CNN parameters for image classification AlexNet with PSO PSO 0.7–5.7% improvement over Caffe’s original 
setup

Sinha et al.59 Image classification on CIFAR-10 and roadside 
vegetation

PSO-based optimized 
CNN PSO Efficient parameter exploration

Darwish et al.65 Plant disease classification Ensemble CNNs (VGG16, 
VGG19)

Orthogonal Learning PSO 
(OLPSO) Outperformed InceptionV3, Xception

Wang et al.29 Optimize CNN hyperparameters for efficiency cPSO-CNN Confidence-based PSO 
(cPSO)

Competitive performance, lower 
computational cost

Hu et al.60 Real-time COVID-19 detection from chest X-rays CNN-ELM with ChOA ChOA 98.25–99.11% accuracy on COVID-Xray-5k

Wang et al. 62 COVID-19 detection from chest X-rays DCNN-WOA WOA 99.06% accuracy

Yutong et al.68 Real-time sonar anomaly detection FSMA-ELM Fuzzy SMA (FSMA) 2.11% improvement over best benchmark 
models

Khishe et al.63 Early COVID-19 detection with compact model OptiDCNN BBO 99.11% accuracy, supports real-time 
applications

Saffari et al.67 COVID-19 detection with enhanced WOA DCNN-FuzzyWOA Fuzzy WOA 100% accuracy on COVID-Xray-5k

Khishe et al. 70 Sonar wave recognition under varying conditions VLBBO-DCNN Variable-Length Habitat BBO 
(VLHBBO)

Superior across eight metrics on sonar 
datasets

Cai et al.61 COVID-19 diagnosis from chest X-rays DCNN-ChOA ChOA 99.11% accuracy

Khishe et al.69 High-dimensional sonar classification DNN-MFO MFO 1.6–2.1% classification improvement

Khishe71 Adaptable CNN for complex image classification Variable-Length WOA 
(IPWOA) Internet Protocol-based WOA Outperformed 23 classifiers in 81 of 95 

evaluations

Azhdari et al.73 Pulse Repetition Interval Modulation (PRIM) 
recognition DCNN-VBBO-ELM Variable-Length BBO 97.05% accuracy, fast real-time training

Sawan et al.56 Classify strokes using EEG signals CNN-BiGRU with HS 
& MVO

HS, Multiverse Optimization 
(MVO)

99.991% accuracy, real-time cloud-based 
system

Xin et al.66 DCNN hyperparameter tuning DCNN-AHBBO Adaptive Habitat BBO Outperformed 23 classifiers, lower error rates

Table 2.  Overview of metaheuristic-based optimization approaches for Deep Convolutional Neural Networks 
(DCNN) Based on objective, approach, employed metaheuristic, and main findings.
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Developed variants of the hunger games search
The HGS approach that inspires its idea from the ”Hunger Games” is notable in the optimization domain for 
its high robustness, few parameters, and simplicity compared to other optimization techniques. These traits 
are precisely the reason why HGS is useful and frequently applied for resolving challenging issues in various 
applications. For instance, Fahim et al.79 developed an HGS-based model for optimizing proton exchange 
membrane fuel cell (PEMFC) parameters. The proposed HGS-based PEMFC model was applied to two 
commercial PEMFCs: the Ballard Mark V and the BCS 500 W. With the suggested HGS-based PEMFC model, 
a very accurate model could be achieved, which would change how the fuel cells work and are controlled in 
the simulations (2021). A different study by Nguyen and Bui80 proposed a soft computing model, referred to as 
HGS-ANN, that combines HGS with an artificial neural network (ANN) for forecasting the intensity of ground 
vibrations (BIGV) caused by mine blasting. Experimental results using real data demonstrated that the HGS-
ANN model performed better compared to other MH-based models; thus, it is recommended for optimizing 
blast patterns and reducing environmental effects.

To achieve a 96-h long-term hybrid microgrid (HMG) system scheduling energy management scheme, 
Shaker et al.81 proposed a multi-objective optimizer based on the hunger game search (HGSO). The proposed 
strategy focuses on maintaining uninterrupted power with low operating costs and minimal emissions from 
the storage system, all while achieving a high renewable factor. When comparing the proposed approach with 
other advanced optimizers, it demonstrates consistent success in decreasing power loss, reducing emissions, 
and providing cost savings for customers. AbuShanab et al.82 developed an AI-based predictive model for 
manufacturing processes, specifically focusing on friction stir welding of different types of plastic materials. 
Their model employs a technique called Random Vector Functional Link (RVFL), which is enhanced by the 
Hunger Games Search (HGS) optimizer to improve accuracy by optimizing the model’s settings. They compared 
their RVFL-HGS model against two other models optimized with different methods and found that RVFL-HGS 
outperformed the others across several statistical measures. This demonstrates its effectiveness in predicting the 
qualities of welded joints.

In addition to the above-related works that review the application of the basic HGS in various practical 
problems, some research efforts aim to overcome the limitations of the basic HGS. These efforts involve 
incorporating new operators and hybridizing with other MHs to enhance performance and solve more complex 
problems. For instance, Chakraborty et al.83 proposed an enhanced HGS that combines the starvation concept of 
HGS with the search methods of the Whale Optimization Algorithm (WOA), termed HSWOA. This integration 
aims to balance the exploration and exploitation phases effectively. The HSWOA was evaluated using 30 
classical benchmark functions and seven real-world engineering challenges. Kutlu Onay and Aydemir84 utilized 
the features of chaotic mappings, ergodic and irreducible, to integrate into HGS to address its limited search 
capability. The chaotic HGS performance is showcased on 23 classical functions and CEC2017, and this version 
is utilized in three practical engineering application problems. In their study, Li et al.85 a hybrid algorithm based 
on HGS and DE called DEHGS. This method aims to enhance the utilization of local regions within individual 
neighborhoods. In addition, a novel ranking-based method is added to DE to produce more promising 
results. Experimental results on the IEEE CEC2017 benchmark functions demonstrate the hybrid algorithm’s 
effectiveness compared to some state-of-the-art algorithms.

As reported in the study by Mahajan et al.86, the convergence rate can be significantly improved by 
implementing the AOAHGS technique which combines the arithmetic optimization algorithm (AOA) and HGS. 
This method was tested with 23 classical functions and exhibited an optimal balance between the exploration 
and exploitation phases of the original HGS. Ma et al.87 developed a multistage HGS (MS-HGS) and its binary 
counterpart (MS-bHGS) as two new methods. The proposed algorithm uses chaos theory, greedy selection, and 
vertical crossover to attain the optimum balance of exploration and exploitation. The new MS-HGS algorithm is 
assessed on 23 real-valued benchmark functions, while MS-bHGS is implemented to reduce the dimensionality 
of 20 datasets from the UCI repository. The experimental results demonstrate that MS-HGS is an advanced 
optimizer, while MS-bHGS can be regarded as a very effective wrapper feature selection technique.

Xu et al.88 developed an advanced HGS (IHGS) to handle solar photovoltaic (PV) parameter extraction. The 
authors employed a combination of a quantum revolving gate strategy and Nelder-Mead simplex methods (NMs)
to maintain the population diversity and accelerate the search towards the best solutions in the decision space. 
Experimental results prove that the IHGS algorithm is a valuable optimization technique for the estimation of 
solar PV parameters. In another notable contribution, Zhou et al.38 introduced an enhanced variant of the HGS 
(OCBHGS)and. It incorporates three primary strategies: the Gaussian barebones scheme, chaotic initialization, 
and orthogonal training. The goal is to maximize the initial population’s quality, increase population diversity, 
and extend domain explorations to improve solution quality. Experimental evaluation was conducted using the 
CEC2014 competition benchmark function. Additionally, OCBHGS was applied to resolve three constrained 
real-world engineering challenges. The findings demonstrate that the OCBHGS significantly outperforms in 
terms of convergence speed and accuracy.

Table 3 summarizes the reviewed studies on HGS and its enhancements. The examined studies demonstrate 
notable progress in applying HGS for optimization in a variety of domains. However, there is still a need to 
address the problem of effectively escaping local optima and utilizing local optimal solutions. To significantly 
boost optimization efficiency, our proposed work provides an enhanced HGS that creatively combines the idea 
of local best solutions with a mechanism for escaping local optima. Furthermore, this work is the first use of the 
HGS specifically to fine-tune the VGG16 model for logo classification. This new methodology not only adds to 
the body of knowledge about optimization techniques but also pioneers the use of advanced HGS variants in the 
field of deep learning for image recognition.
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Research background
This section provides the comprehensive background information required for a self-explanatory understanding 
of the techniques employed in our research. The fundamental HGS, as introduced by Yang et al.37, is detailed 
in “Hunger games search (HGS): inspiration and mathematical model” section. Following this, “VGG16 deep 
learning model” section explores the VGG16 deep learning model. The selective search approach for object 
proposals, along with the Intersection over Union (IoU) measure, are presented in “Selective search for object 
proposal” section.

Hunger games search (HGS): inspiration and mathematical model
Inspiration and motivation behind HGS
Animals make decisions and behave based on computational principles that come from their sensory input and 
interactions with their surroundings. The cognitive structures of animals are based on principles that develop 
to improve survival, reproduction, and food acquisition89. Hunger significantly influences animals’ behaviors, 
emphasizing the importance of seeking food over other inputs and requirements. Therefore, animals must 
skillfully manage exploration, defense, and competition, demonstrating adaptable feeding techniques90.

Animal behavioral decisions are impacted by a combination of factors such as their motivational state and 
environmental cues. Neuroscientists acknowledge hunger as a major motivator that takes precedence over other 
drives including thirst, fear, and social demands91. It drives animals towards behaviors that secure their existence 
by maintaining stable life situations. Social behaviors are important for avoiding predators and locating food, but 
they can be less important when there is an immediate need to eat due to hunger. This natural selection process, 
driven by the ability to secure food, suggests a ”hunger game” in the wild, where survival hinges on making the 
right decisions. Animals communicate about food sources to reduce uncertainty and enhance their chances of 
survival. In scenarios where food is scarce, animals engage in a strategic competition to access resources, with 
survival depending on their ability to make logical choices and movements. Building upon these premises, the 
Hunger Games Search (HGS) algorithms was proposed37.

The Hunger Games Search (HGS) is a novel and recent population-based metaheuristic algorithm that 
mimics the natural instinct of animals to search for food37. Hunger is employed as the main motivation in order 
to design a competitive and computationally effective algorithm. The algorithm simulates competition, selection, 
and adaptive processes seen in nature as well as a game (Hunger Games) that is fictional. In such a game, agents 
(individuals) compete for resources or survival in a difficult environment. In the context of optimization, these 
agents are seen as possible solutions to a problem, and the environment is the area where the problem is being 
searched for solutions. The algorithm goes through a process of competition, selection, and adaptation that helps 
in generating the best solution(s) to the problem.

Mathematical model of the HGS algorithm
This section explains the mathematical model of the HGS algorithm. The algorithm relies on two fundamental 
components, the ”Approach Rule” and the ”Hunger Rule,” to simulate natural hunger-driven behaviors and the 
adaptive decision-making strategies.

Approavh food
In nature, animals frequently collaborate in searching for food, while at other times they choose to forge 
independently92. Animal hunting techniques serve as inspiration for the mathematical formulas in Eq. (1). They 

References Year Contribution/Enhancement Application Remarks

79 2021 HGS-based model for optimizing PEMFC parameters PEMFC: Ballard Mark V and BCS 500 W Demonstrated high accuracy, potentially 
changing fuel cell simulations

80 2021 HGS-ANN for forecasting BIGV caused by mine blasting Forecasting ground vibrations Outperformed other MH-based models, 
recommended for blast optimization

81 2021 Multi-objective HGSO for hybrid microgrid system 
scheduling Energy management in HMG systems Consistently decreased power loss, 

emissions, and cost
82 2021 RVFL enhanced by HGS for manufacturing processes Friction stir welding of plastics Outperformed other models in accuracy

83 2021 Enhanced HGS with WOA (HSWOA) Classical benchmark functions and 
engineering challenges

Balanced exploration and exploitation 
phases

84 2022 Chaotic mappings integrated into HGS Classical functions and CEC2017 Addressed HGS’s limited search capability

85 2021 Hybrid HGS and DE algorithm (DEHGS) IEEE CEC2017 benchmark functions Enhanced local region utilization and 
provided promising results

86 2022 AOAHGS method combining AOA and HGS Classical functions Achieved faster convergence, balanced 
exploration and local search

87 2022 Multi-strategy HGS (MS-HGS) and its binary variant 
(MS-bHGS)

Benchmark functions and UCI feature 
selection datasets

Superior optimizer, valuable for feature 
selection

88 2022 Improved HGS (IHGS) with quantum and Nelder-Mead 
methods Solar PV parameter estimation Showed valuable optimization for solar 

PV parameter estimation

38 2022 Enhanced HGS (OCBHGS) with three primary strategies CEC2014 benchmark and real-world 
engineering challenges

Significantly outperforms in convergence 
speed and accuracy

Table 3.  Summary of reviewed studies on Hunger Games Search (HGS) and its enhancements, highlighting 
main contributions, application domains, and key remarks.
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represent three different patterns in which animals move, reflecting their behavior when approaching a food 
source. These patterns are fundamental to the HGS algorithm, which mimics both cooperative behavior between 
animals and individual foraging.

	

X⃗(t + 1) =




X⃗(t) · (1 + randn(1)), if r1 < l

W⃗1 · X⃗b + R⃗ · W⃗2 · |X⃗b − X⃗(t)|, if r1 > l, r2 > E

W⃗1 · X⃗b − R⃗ · W⃗2 · |X⃗b − X⃗(t)|, if r1 > l, r2 ≤ E

� (1)

where R⃗ varies within [−a, a], r1 and r2 are random numbers within the [0,  1] range. The term randn(1) 
refers to a normally distributed random number. The variable t represents the current iteration, with X⃗(t) and 
X⃗(t + 1) indicating the current and subsequent positions of each individual, respectively. W⃗1 and W⃗2 are 
weights associated with hunger, which are designed based on hunger-driven signals. X⃗b denotes the position 
of the best individual in the current iteration. Lastly, l is a significant control parameter of the HGS, which can 
influence its overall performance.

In the proposed updating rules, X⃗(t) · (1 + randn(1)) illustrates how an agent searches for food both hungrily 
and randomly at its current location. The expression |X⃗b − X⃗(t)| depicts the activity range of an individual at 
the current time, which is then adjusted by W⃗2 to reflect hunger’s impact on this activity range. The searching 
ceases once the individual is no longer hungry, with R⃗ serving as a control to gradually reduce the activity range 
to zero. The addition or subtraction of the activity range, influenced by W⃗1 · X⃗b, mimics how an individual, 
guided by its peers to a food source, resumes searching at the current location after food is found. Here, W⃗1 
represents the discrepancy in accurately pinpointing the actual location in reality.

According to the mathematical formula in Eq. (2) E serves as a variation control for all positions.

	 E = sech(|F (i) − BF |)� (2)

For each individual i, where i ranges from 1 to n with n being the number of search agents or population size, 
F(i) denotes the fitness value. BF signifies the best fitness achieved during the current iteration (so far). The 
hyperbolic function sech is defined as:

	
sech(x) = 2

ex + e−x
.� (3)

The expression for R⃗ is outlined as:

	 R⃗ = 2 × shrink × rand − shrink� (4)

	
shrink = 2 ×

(
1 − t

T

)
,� (5)

Here, rand represents a random value within the interval [0, 1], and T denotes the total number of iterations. The 
shrink parameter, calculated based on the current iteration t relative to the total iterations T, ranges from 0 to 
2. This range reflects how the influence of the shrink factor diminishes over time, from its maximum at the start 
of the search process to zero as t approaches T. Consequently, the range of R⃗, which adjusts the activity range of 
the search agents based on shrink and rand, also varies from −2 to 2, as demonstrated in Fig. 1. This dynamic 
range allows for a controlled exploration of the search space, narrowing as the algorithm progresses, to focus on 
the exploitation of the best solutions found.

Fig. 1.  Dynamic range of R⃗ in HGS over 100 iterations, demonstrating controlled exploration and focused 
exploitation.
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Hunger rule
This section introduces the mathematical model designed to simulate the starvation traits of individuals, which 
form the foundational element of the HGS algorithm. The formulas for W⃗1(i) and W⃗2(i) in Eq. (1) are described 
in Eqs. (6) and (7), respectively.

	
W⃗1(i) =

{
hungry(i) · N

SHungry × r4, if r3 < l
1, if r3 > l

� (6)

	 W⃗2(i) = (1 − exp(−|hungry(i) − SHungry|)) × r5 × 2� (7)

In this context, hungry quantifies the hunger level of each individual; N denotes the total number of individuals; 
and SHungry represents the aggregate hunger across all individuals, essentially the sum of their hunger levels, 
that is, 

∑
(hungry). Random numbers r3, r4, and r5 fall within the range of [0, 1]. The equation for calculating 

an individual’s hunger, hungry(i), is outlined in Eq. (8).

	
hungry(i) =

{ 0, if AllFitness(i) = BF
hungry(i) + H, if AllFitness(i) ̸= BF � (8)

where AllFitness(i) stores the fitness value of each individual for the current iteration. At each iteration, the 
hunger level of the best-performing individual is reset to 0. For the rest of the individuals, their hunger level 
(H) is updated by adding a certain amount to their existing hunger. This implies that the updated hunger levels, 
denoted by H, will vary among individuals. The value of H can be calculated using Eq. (9).

	
H =

{
LH × (1 + r), if T H < LH
T H, if T H ≥ LH � (9)

	
T H = F (i) − BF

W F − BF
× r6 × 2 × (UB − LB)� (10)

where r6 is a random number within the [0,1] range; F(i) denotes the fitness value of each individual; BF 
represents the highest fitness achieved during the current iteration; WF signifies the lowest fitness obtained 
in the current iteration; UB and LB refer to the upper and lower bounds of the feature space, respectively. The 
sensation of hunger, as described in93, denoted as H, is constrained by a minimum value, LH. To enhance the 
algorithm’s efficiency, we manage hunger’s upper and lower thresholds, with LH’s value being explored during 
parameter tuning. As hunger can influence the activity range both positively and negatively, W1 and W2 are 
modeled to reflect this. In Eq. (10), the disparity between UB and LB illustrates the maximum hunger level under 
varying conditions; F (i) − BF  quantifies the remaining food required for an individual to satisfy hunger; Each 
iteration modifies an individual’s hunger level. W F − DF  calculates an individual’s total foraging potential in 
the current scenario; F (i)−DF

W F −DF  determines the hunger ratio; r6 × 2 assesses the environmental impact, either 
positive or negative, on hunger.

Algorithm 1 presents the pseudo-code for the HGS, while Fig. 2 illustrates the corresponding flowchart.
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Algorithm 1.  Pseudo-code of HGS

VGG16 deep learning model
The VGG16 (Visual Geometry Group), referred to as VGGNet, is a CNN deep learning model with 16 layers. 
Given its impressive performance in image classification tasks, the VGG-16 presented by Simonyan and 
Zisserma94 has attracted a lot of attention. There are 16 layers total in the VGG-16 architecture, comprising 13 
convolutional layers and 3 fully connected layers (see Fig. 3).

Rectified Linear Unit (ReLU) activation functions are put after each convolutional layer in the VGG-16 
architecture. This makes it easier for the model to recognize patterns that are irregular. The network uses 3x3 
filters with a stride of 1 and padding of 1 to capture fine spatial features while maintaining spatial resolution. 
By using many layers of convolution, this arrangement enables the model to learn complicated and abstract 
properties. Following each set of two or three convolutional layers, two max-pooling layers with a 2 × 2 window 

Fig. 3.  Architecture of the VGG16 model, comprising 13 convolutional layers and 3 fully connected layers.

 

Fig. 2.  Flowchart of the original hunger games search algorithm.
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and a stride of two are used. These max-pooling methods downsample the feature maps, preserving the most 
important data while lowering the spatial dimensions. In VGG-16, the fully connected layers are essential for 
high-level feature fusion and decision-making. The network has three fully connected layers, each with 4096 
units, and then a final softmax layer for classification. This approach enables the model to learn intricate 
correlations between features and generate predictions using the learnt representations. The VGGNet design 
integrates key elements of CNNs. Here is a brief overview of the VGG architecture94,95:

•	 Input layer: VGGNet is fed with images of 224×224 pixel size. Concerning the consistency of inputs, the 
images in the ImageNet competition were brought to a standard form by cropping a 224×224 section from 
their center.

•	 Convolutional layers: The model utilizes 3×3 convolutional filters, the smallest possible size, to extract detailed 
features from the input image. Furthermore, a linear transformation is implemented by 1×1 convolutional 
filters. The same stride of one pixel is kept across these layers to ensure that the spatial resolution is preserved, 
and the network is therefore able to thoroughly analyze the image space.

•	 ReLU activation: VGGNet proceeds with convolutional layers, and then includes the ReLU activation func-
tion. The innovation, which was first used by the AlexNet approach, shortens the training time. ReLu activates 
only positive value inputs, outputting zero for negative value inputs, which greatly simplifies the computation-
al process without compromising on effectiveness.

•	 Hidden layers: In the case of AlexNet, there is a use of local response normalization, but VGGNet uses only 
ReLU for its hidden layers. With such a selection, the model does not require any additional training time or 
memory utilization, as in the case of normalization. The model’s accuracy is not affected, either.

•	 Pooling layers: This architecture consecutively applies convolutional layers and then pooling to decrease the 
dimensionality as well as the number of parameters in the resulting feature maps. Pooling is essential for 
managing the exponential increase in filter numbers, which grow from 64 in the initial layers to 512 in the 
later stages.

•	 Fully connected layers: The VGGNet architecture concludes with a stack of three fully connected layers. The 
first two layers possess 4096 channels each, preparing the network for the final classification layer. The fi-
nal layer adapts to the dataset’s number of classification categories (e.g., 1000 for ImageNet). By integrating 
high-level features, these layers facilitate critical decision-making and precision in the network.Finally, VGG-
16 is recognized as one of the most notable DL models in terms of its simplicity and depth. In spite of being 
basic in architecture, it has proved to be successful in image classification cases and is regarded as a bench-
mark in the area of computer vision. The design principles of this model have influenced subsequent models 
for deeper layers with smaller filters. So far, these principles have demonstrated the fact that such architecture 
can substantially contribute to the improvement of performance while avoiding complexities. This methodol-
ogy is not only a main component of the research on DL models but is also considered to be the standard for 
feature extraction techniques in various image processing applications96,97.

Selective search for object proposal
Selective search is an image processing method that aims to find potential objects in an image14. It divides the 
image into different regions based on how they look (color, pattern, size) and then groups these regions to create 
objects. Figure 4 demonstrates the process of selective search applied to an input image. Uijlings et al.98 was 
the first to develop this technique, which has since gained widespread use in the literature. According to99, the 
algorithm employs segmentation to create potential object regions. Selective search starts with small image areas 
and progressively combines them to form bigger ones, resulting in a variety of object proposals with varying 
sizes and resolutions. This merging process simplifies the search process for object identification and recognition 
tasks, leading to greater efficiency and accuracy in computer vision applications.

Intersection over Union (IoU) for object proposal evaluation
The Intersection over Union (IoU) is frequently used in object detection as a metric for assessing possible target 
regions100. The approach computes the IoU between suggested regions (i.e. predicted bounding box) and true 
target regions (i.e. the ground truth bounding box). It gives higher ratings to areas with a higher IoU, suggesting 

Fig. 4.  The process of generating object proposals using selective search.
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a more accurate alignment with the target items. This process assists in prioritizing the most favorable regions 
and reduces the search area, focusing computational resources on regions more likely to contain the target 
object. Thus, IoU is essential for enhancing the precision of object detection. It helps identify candidate regions 
for further analysis by CNNs or other classifiers. IoU serves as a benchmark for evaluating the performance of 
object detection algorithms. By defining a threshold, predicted bounding boxes can be deemed successful if their 
IoU with the actual bounding box (ground truth) meets or exceeds the threshold.

As shown in Fig. 5, the IoU calculates the intersection of the predicted bounding box with the ground-truth 
bounding box. A score of 0 on the IoU indicates no overlap, which is considered poor detection. Scores of around 
0.7 or higher suggest good to excellent detection, with significant overlap. The IoU is calculated using Eq. (11).

	
IoU = Area of Overlap

Area of Union
� (11)

Proposed methodology for enhanced logo detection
The methodology adopted in our research was chosen to address the complexities involved in logo detection 
by using a series of interconnected components to improve accuracy and effectiveness. This methodology 
combines a powerful deep learning (DL) model with an innovative, nature-inspired optimization algorithm. 
Its functionality was evaluated based on a well-selected dataset. The pipeline consists of several phases: 
dataset selection and preprocessing, generation of object proposals, model configuration and optimization, 
hyperparameter tuning, and finally, the training and validation phases. The schematic diagram shown in Fig. 
1 demonstrates the methodology used to develop the framework for detecting and classifying logos. While the 
basic stages are explained in the subsequent sections.

Dataset selection and preprocessing
Data selection
We performed an extensive search for already available datasets that may be used for logo classification. In this 
sense, we used the well-known FlickrLogos-27 dataset as a baseline for our analyses. The Flicker dataset contains 
a wide variety of annotated logo pictures, allowing us to thoroughly test and compare the performance of our 
model.

The FlickrLogos-27 dataset101 is commonly used in logo recognition tasks. It consists of approximately 8000 
images divided into 27 distinct logo categories, such as Adidas, Apple, BMW, Coca-Cola, Nike, and Starbucks. 
Samples of logos within the FlickrLogos collection can be found on the dataset’s official website ​[​​​h​t​t​p​​s​:​/​/​w​w​​w​
.​u​n​i​-​​a​u​g​s​b​u​​r​g​.​d​e​/​e​n​/​f​a​k​u​l​t​a​e​t​/​f​a​i​/​i​n​f​o​r​m​a​t​i​k​/​p​r​o​f​/​m​m​c​/​r​e​s​e​a​r​c​h​/​d​a​t​e​n​s​a​t​z​e​/​f​l​i​c​k​r​l​o​g​o​s​/​​​​​]​. The dataset includes 
numerous variations of each logo showcasing varying colors, sizes, orientations, and backgrounds. These 
variations are crucial for training and evaluating algorithms designed to identify logos in real-world scenarios.

The FlickrLogos-27 dataset consists of a diverse collection of logo images collected from various sources, 
ensuring a comprehensive representation of real-world logo variations. Each image has bounding box 
annotations pinpointing the logo’s location and a class label specifying the represented logo. These annotations 
facilitate logo detection, identification, localization, and retrieval. The dataset poses challenges due to significant 
variations in logo appearance, including variations in size, orientation, lighting, obstructions, and background 
noise. To tackle these challenges, advanced computer vision algorithms are needed. The FlickrLogos-27 dataset 
is valuable because it showcases real-world logo variations. This allows us to test our models under realistic 
conditions and assess their accuracy. Additionally, the dataset helps us refine our models and handle specific 
issues related to logo identification. Overall, the diversity of FlickrLogos-27 ensures that the proposed model can 
adapt to different logo scenarios and thus contributing to developments in logo-related applications.

Preprocessing
The first major step in our logo detection pipeline is pre-processing the incoming images. This phase includes 
several basic techniques aimed at preparing and improving the quality of images and ensuring their suitability 
for optimal performance with the VGG-16 model.

•	 Image Loading and region of interest extraction: First of all, the images and their annotations are loaded from 
the dataset. Every record in the annotation file consists of three parts: the filename, the class label, and coor-
dinates of the logo within the image (x1, y1, x2, y2). These annotations are applied to recognize the region of 

Fig. 5.  Examples of IoU scores in object detection, illustrating various cases: no overlap, poor overlap, good 
overlap, and excellent overlap.
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interest (ROI) for each image containing the logo and hence concentrate on the relevant portion of the image 
containing the logo for further analysis.

•	 Image resizing: In this step, each ROI is resized to 224 × 224 pixels to fit the input size requirements of the 
VGG-16 model. This resizing is performed using TensorFlow’s resize function, which seamlessly scales imag-
es to the desired dimensions while maintaining the aspect ratio.

•	 Preprocessing for VGG-16: Following the resizing step, the images go through one more preprocessing step 
to prepare them for the input format expected by the VGG-16 model. The ′preprocess_input′ function 
from the Keras applications is utilized to prepare each image by applying several preprocessing adjustments, 
including channel reordering and pixel value scaling. In particular, it ensures that the channels are in the BGR 
order because VGG-16 was trained on images in this format, and it normalizes the pixel values by subtracting 
the mean of each color channel (B, G, R) across the entire ImageNet dataset from the corresponding channel 
in the input image (i.e. each color channel is zero-centered with respect to the ImageNet dataset). Through 
efficient pixel-by-pixel color normalization and channel modification, this technique sets up the images for 
precise analysis and categorization by the model.

Object proposal generation and data augmentation
In this study, we employed the selective search algorithm and the IoU metric described in “Selective search for 
object proposal” section for the generation and selection of object proposals. This approach was applied for two 
purposes: to extract regions containing logos within images and to enhance the dataset through augmentation, 
which will improve the model’s training and recognition capabilities.

Using the selective search algorithm, we generated a wide range of potential object locations in images. 
The algorithm focuses on identifying regions that have a high probability of containing logos. This process 
is also useful for locating logos that may differ in size and appearance across different images. To evaluate the 
quality of the proposals, we employed the IoU score against the known logo annotations (the actual logos). We 
have set a threshold of 0.9 to assess the precision of the predictions. A predicted bounding box is considered a 
successful match if its IoU with the ground truth bounding box exceeds the selected threshold. After that, the 
selected regions are resized to the necessary size (224 × 224 pixels), and preprocessed to match VGG-16 model 
specifications. This process therefore augments the original dataset with high-quality logo instances and also 
enriches the training data by providing the model with diverse displays of logos to learn from.

Deep learning model configuration
This part aims to explore the detailed process of setting up the DL model for our logo detection framework. 
This involves making modifications and adding extra layers to customize the model according to our unique 
requirements. Following the fundamentals outlined in “VGG16 deep learning model” section, our practical 
approach incorporates the powerful features of the VGG-16 and carefully adjusted modifications to improve the 
accuracy of logo recognition.

Model construction
Our model relies on the VGG16 architecture. It has been preloaded with initial weights trained on the ImageNet 
dataset102 to utilize the strong feature extraction abilities of this DL model. The VGG16 model is modified by 
removing the original top layer to enable the addition of a new top layer that’s designed for logo classification. 
During the initial training phase, the layers of the base model are kept frozen to maintain the pre-trained features. 
Several layers are added to the base VGG16 model:

•	 A flatten layer is used to transform the 2D feature maps into a 1D vector.
•	 Two dense layers, each consisting of 4096 units and ReLU activation, are utilized to incorporate more learn-

able parameters for interpreting high-level features.
•	 A final dense prediction layer with several units matching the distinct number of logos in the dataset, is add-

ed. A softmax activation function is applied for multi-class classification.

Training procedure
For training the custom VGG16 model, the data set is first divided into two subsets: 75% for training and 
validation, and 25% for testing. The 75% portion designated for training and validation is divided further using 
an 80–20 split. This division results in 80% of the data being used for training purposes, with the remaining 20% 
allocated to validation. By following this systematic approach, we ensure comprehensive training of our model 
as well as a way to evaluate its effectiveness and extend its utility to unseen data.

To boost the training efficiency of our model and avoid overfitting, we have incorporated an early stopping 
mechanism. This approach monitors validation accuracy during training. If there is no progress for a specified 
number of epochs, training will stop automatically. Furthermore, this approach ensures that the model returns 
to the best-performing iteration weights, ensuring that the final model reflects the most effective version 
encountered during training. This method helps save computational resources by skipping unnecessary training 
cycles and keeps the model’s performance generalizable without overfitting the training data.

Table 4 summarizes the configuration and training details of our customized VGG16 model.

Enhancement of the HGS algorithm (EHGS)
Before discussing the enhancements to the HGS algorithm, it’s crucial to acknowledge the limitations of its 
standard version. Despite the effectiveness of HGS at handling global optimization problems, it has certain flaws, 
including low search veracity, limited population diversity, and a high potential for getting into a local optimum. 
These issues become more apparent when the algorithm is applied to intricate optimization problems. Moreover, 
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when inspecting the mathematical model of the typical HGS, it does not consider information from the optimal 
solution for every search agent (i.e., local best).

To enrich the search strategies of MHs, it is useful to consider, maintain, and track the best solutions obtained 
so far for each search agent. The success of this strategy in several algorithms such as PSO, CSA, and CapSA 
draws attention to this principle. This motivated our attempts to introduce an improved version of the HGS 
called the EHGS, which leverages the benefits of the local best optimum to dynamically change the behavior and 
search strategy of HGS. EHGS incorporates two separate update strategies for each individual in the population, 
based on whether an abandonment limit criterion is satisfied.

When the ith best local optimum (pbesti) shows improvement, the basic rules of the HGS are applied. If there 
is no progress seen in the best local position (pbesti) after K iterations, the update process for the corresponding 
individual xi is stopped. Alternatively, a different update process inspired by the differential evolution (DE) 
algorithm103 is used. This method involves applying a perturbation to the local optimum using Eq. (12).

	 Xi(t + 1) = pbesti + r
(
xrand − xi(t)

)
� (12)

where pbesti represents the best local position of the ith individual, xrand refers to a position selected at random 
from a set of N solutions, and r, denotes a uniformly generated random number in the range [0, 1].

Algorithm 2 presents the pseudo-code of the proposed EHGS. Leveraging local optima and the abandonment 
limit strategy enables the search agent to investigate the surrounding area of its current best location. By incor-
porating a step size based on the difference between the randomly selected position and the current position, 
a more optimal solution can be identified. This process enhances the utilization of the best local optima and 
enhances the quality of the population. 

Parameter/component Description/setting

Base model VGG16, pre-trained on ImageNet, modified for logo detection

Optimizer General gradient-based optimization method (e.g., Adam)

Loss function Categorical crossentropy

Performance metrics Precision, Recall, Accuracy

Input shape 224 × 224 × 3

Final layer activation Softmax

Number of classes Corresponding to the dataset

Dataset split 75% for training/validation; 25% for testing

Training/validation split Within the 75%, an 80–20 split for training-validation

Early stopping Monitors validation accuracy; stop after 5 epochs with no improvement;

reverts to best-performing weights

Max epochs 15

Batch size 32

Table 4.  Configuration and training details of the customized VGG16 model.
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Algorithm 2.  Pseudo-code of the enhanced HGS (EHGS)

Adapting HGS for hyperparameter tuning of VGG16 model
This section outlines the process of adapting the HGS and its enhanced version to optimize the hyperparameters 
of the VGG16 model for improved logo classification. The approach consists of two primary stages: first, 
formulating the hyperparameter tuning task as an optimization problem, and second, detailing the step-by-step 
integration of EHGS to search for the optimal hyperparameter configuration

Problem formulation
The objective of adapting the HGS algorithm for hyperparameter tuning is to identify the optimal set of 
hyperparameters that maximizes the classification performance of the VGG16 model on the logo classification 
task. When adapting any metaheuristic algorithm to handle an optimization problem, two critical components 
must be formulated: the solution representation and the fitness function. In this context:

•	 Solution Representation: In the context of HGS, a candidate solution is represented as a vector of hyperparam-
eters specific to the VGG16 model and its training process. In this study, the solution vector includes the fol-
lowing hyperparameters: learning rate, number of neurons for dense layers, activation function for additional 
layers, optimizer, patience, and batch size. Table 5 provides the lower and upper bounds for each parameter. 
For categorical parameters, such as activation function and optimizer, indices are used for representation. 
For instance, activation function index (0: ’relu’, 1: ’sigmoid’, 2: ’tanh’) and optimizer index (0: ’adam’, 1: ’sgd’, 
2: ’rmsprop’).

Hyperparameter Lower bound Upper bound

Learning rate 0.0001 0.01

Number of neurons 128 4096

Activation function index 0 2

Optimizer index 0 2

Patience 3 10

Batch size 16 128

Table 5.  Hyperparameter search space and bounds for HGS optimization.
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•	 Fitness Function: The fitness function, also known as the objective function, evaluates the classification perfor-
mance of each candidate solution. For hyperparameter tuning, the fitness function is designed to maximize 
the validation accuracy of the VGG16 model. The fitness function can be formulated as follows: 

	 Fitness(x) = −val_accuracy(x)

 where x is the candidate solution representing a set of hyperparameters. The accuracy is measured on the 
validation set of the logo classification task.

Procedure for integrating EHGS with VGG16
The integration of HGS and EHGS with the VGG16 model enables an automatic selection of the best 
hyperparameters to maximize VGG16’s accuracy. The main steps of this process are outlined below:

•	 Step 1: Initialization This stage involves initializing the problem parameters, EHGS parameters, and the 
VGG16 hyperparameter search space. First, the objective function Fitness(x) = −val_accuracy(x), solu-
tion encoding (x = [x1, x2, . . . , xn] where each xi represents a hyperparameter), and search space dimen-
sions are defind. The solution representation and fitness function, formulated in the previous subsection, 
serve as the foundation for the optimization process. The adjustable parameters of EHGS must also be set 
up at this stage. These include the population size, maximum number of generations, and any tuning param-
eters specific to the EHGS operators (e.g., hunger ratio and adaptation rate). Additionally, the search space 
bounds for each hyperparameter, such as learning rate, number of neurons, activation function, optimizer, 
patience, and batch size, must be established, as described in Table 5. Finally, the VGG16 model architecture 
is constructed with the necessary layers and adjustments for the logo classification task, as detailed in “Model 
construction” section.

•	 Step 2: Generate Initial Population In this step, EHGS follows the standard initialization process of the HGS 
algorithm. A population of candidate solutions X = (x1, x2, x3, . . . , xN ) is initially positioned random-
ly within the defined hyperparameter search space. These candidates represent possible configurations of 
VGG16 hyperparameters for the optimization task. Each candidate solution xj  (where j ∈ {1, 2, 3, . . . , N}
) is determined using Eq. (13). 

	 x⃗j = x⃗L + r(x⃗U − x⃗L)� (13)

 where x⃗L and x⃗U  represent the lower and upper bounds for each hyperparameter, respectively, and r is a 
random number uniformly distributed in the range [0, 1]. This initialization ensures a diverse set of starting 
solutions, enabling EHGS to explore a wide range of hyperparameter configurations.

•	 Step 3: Fitness Evaluation For each candidate solution in the population, EHGS evaluates the VGG16 model’s 
classification performance using the hyperparameters represented by that solution. The fitness function is 
calculated based on validation accuracy, where higher validation accuracy indicates a better solution. During 
this evaluation, the VGG16 model is trained on the logo classification dataset using the candidate hyperpa-
rameter configuration

•	 Step 4: Evolutionary Optimization through EHGS Operators In this step, EHGS refines the population by using 
its mathematical operators, as described in Algorithm 2. These operators are designed to balance exploration 
(discovering new hyperparameter configurations) and exploitation (enhancing promising configurations) 
within the search space.

•	 Step 5: Iteration and Stopping Criterion Check The EHGS process iterates across multiple generations, contin-
uously updating the population of candidate solutions. This iterative loop continues until the stopping crite-
rion-such as a predefined number of generations-is satisfied. If the stopping condition is not met, the process 
returns to Step 3 to further optimize the candidate solutions.

•	 Final Hyperparameter Selection Once the EHGS algorithm meets the stopping criterion, it selects the top-per-
forming set of hyperparameters, based on the highest validation accuracy, as the final configuration for train-
ing the VGG16 model on the logo classification task.

Code availability
The custom code and algorithms used in this study to generate results are available upon request. The code is 
hosted in a GitHub repository and can be accessed at the following link: ​[​​​h​​​​t​t​p​​s​:​​/​/​g​​i​t​​h​u​​b​.​c​o​m​/​​T​​h​ a​e​r​8​3​/​E​H​G​
S​-​L​o​g​o​-​C​l​a​s​s​i​f​i​c​a​t​i​o​n​.​g​i​t​​​​​]​. The repository includes the code for all experiments, including the implementation 
of swarm intelligence algorithms for the CEC2014 benchmark functions, the deep learning models for logo 
classification, and the hyperparameter tuning using the EHGS algorithm. Access to the code is available for 
public use with proper citation. If any access restrictions apply, they will be clearly described on the repository 
page.
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Performance evaluation
Logo classification performance metrics
To thoroughly evaluate the performance of our logo detection model, we used a series of common metrics for 
assessing multi-task classification models. We considered three primary metrics: accuracy, recall, and precision.

•	 Accuracy: this measure determines the proportion of correct predictions to the total number of observations, 
indicating the model’s overall correctness. It is calculated as: 

	
Accuracy = T P + T N

T P + T N + F P + F N

 where T P  denotes true positives, T N  true negatives, F P  false positives, and F N  false negatives.

•	 Recall (sensitivity): This metric quantifies the model’s ability to accurately identify all true positives. It is cru-
cial when missing a positive instance is significant. It is calculated as: 

	
Recall = T P

T P + F N

•	 Precision: is a measure of the model’s accuracy in making positive predictions, demonstrating its ability to 
distinguish between different logos. The formula for precision is: 

	
P recision = T P

T P + F P

It is important to note that the Precision and Recall metrics are calculated as an average across all classes in a 
multi-class classification context.

Evaluation of HGS and EHGS algorithms
To evaluate the performance of the HGS and its enhanced version EHGS, we focus on two specific metrics:

•	 Fitness values: This metric assesses the optimization capability of the algorithms by measuring the quality of 
solutions found. A lower fitness value indicates a better solution.

•	 Diversity Measure: This metric evaluates the algorithms’ ability to explore a broad range of solutions by ana-
lyzing the variability among the solutions produced. A higher diversity score implies that the algorithms can 
explore various areas of the search space, crucial for avoiding early convergence to suboptimal solutions. The 
calculation of this measure refers to33.

Experimental results and simulations
This section evaluates the Enhanced Hunger Games Search (EHGS) algorithm and its application in logo 
classification through a custom-developed VGG16 deep learning model. The assessment includes three 
parts. Firstly, we test EHGS against benchmark functions from the IEEE CEC2014 to show its effectiveness. 
These benchmark functions are particularly suited for evaluating the behavior and properties of optimization 
algorithms, including their robustness, convergence rate, and overall performance factors33. These problems are 
framed as minimization problems with a known global minimum, allowing for precise evaluation. CEC2014 
benchmark functions are modified versions of other challenging mathematical optimization problems that 
have been rotated, shifted, extended, and combined104. They can be grouped into four categories based on 
their characteristics: unimodal, multimodal, hybrid, and composition functions. Accordingly, they offer a 
comprehensive testing environment that simulates a range of optimization challenges. In specific, they are useful 
to evaluate the search and optimization capabilities of EHGS in a controlled environment. By performing well on 
these benchmarks, EHGS demonstrates its potential for effective hyperparameter tuning in more complex, real-
world tasks like logo classification. In the second phase, we examine the custom VGG16 model’s performance 
for logo classification and compare it to other deep-learning models. Lastly, we integrate EHGS into the 
VGG16 model for hyperparameter optimization and show how it improves accuracy in logo classification. 
Overall, this section shows the benefits of combining evolutionary optimization techniques with deep learning 
for better accuracy and efficiency in logo classification tasks. Due to the stochastic nature of the algorithms 
under examination, computational intelligence research has increasingly focused on non-parametric statistical 
analysis105. In this context, two non-parametric tests-the Friedman test and the Wilcoxon signed-rank test-were 
applied at a 5% significance level to calculate the overall ranking of each algorithm and to perform specific 
pairwise comparisons.

All experiments were conducted in the same environment to ensure fair comparisons. The first part of 
the experiments, where HGS, EHGS, and the compared algorithms were tested, was conducted on a machine 
running Ubuntu 20.04 LTS, equipped with an Intel(R) Core(TM) i7-1165G7 CPU at 2.80 GHz (8 CPUs) and 
16 GB of RAM. The second and third experimental tasks, which involved deep learning for logo classification 
and the integration of EHGS with VGG16, were performed in the Google Colab environment using the n1-
highmem-4 machine type with NVIDIA Tesla T4 GPU acceleration and 100 GB Standard Disk (pd-standard)106. 
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Google Colab provides powerful computational resources, facilitates Python library integration, and enables 
efficient model training and testing, making it an ideal platform for extensive deep learning experiments.

Validation of EHGS on benchmark functions
In this section, a comprehensive evaluation is provided to compare the basic HGS algorithm with its advanced 
version, EHGS. “Comparison between standard HGS and EHGS” section focuses on evaluating the improvements 
in EHGS over the standard HGS, while “Comparison of EHGS with established metaheuristic methods” section 
extends the analysis by comparing EHGS with other well-known metaheuristic algorithms. The comparison is 
conducted on a series of IEEE CEC 2014 benchmark functions through rigorous analysis. The study includes 30 
independent runs for each algorithm to determine the statistical and practical significance of the enhancements 
integrated into EHGS. All optimizers are evaluated utilizing the same standard configurations and settings. The 
detailed parameters of the HGS and the competitor algorithms are reported in Table 6

Comparison between standard HGS and EHGS
In this subsection, we compare the performance of the basic HGS algorithm with its advanced variant, EHGS. 
The comparison aims to validate how the modifications in EHGS, such as enhanced exploration and exploitation 
mechanisms, lead to better overall performance, particularly in terms of solution quality, convergence rate, 
and population diversity. Table 7 reports the results of a comparative study between HGS and EHGS. In this 
comparison, the symbols ”W”, ”L”, and ”T”, representing Win, Loss, and Tie, respectively, are used to indicate 
whether EHGS outperforms, underperforms, or matches the performance of the compared algorithm. As 
depicted in Table 7, The results indicate that EHGS outperforms the basic HGS algorithm in 22 out of 30 cases, 
which is approximately 73% of the test functions. This suggests that the enhancements made to EHGS have 
significantly improved its optimization capabilities, making it more effective in finding better solutions more 
consistently than the basic version. Interestingly, both EHGS and basic HGS perform equally well in 7 test 
functions, which is around 23% of the total test cases. Notably, for test functions F23, F24, F25, F27, F28, F29, 
and F30, both algorithms are able to find the optimal solutions, indicating that both versions of HGS are well-
suited for these particular optimization landscapes.

A nonparametric Wilcoxon Ranksum test was performed to establish a reliable statistical foundation for 
EHGS results and introduce meaningful comparisons. The outcomes are presented in Table 7, where the 
symbols ’+,’ ’−,’ and ’≈’ are used to indicate the statistical superiority, inferiority, or similarity of EHGS with 
its counterpart. Additionally, instances marked with ”NAN” suggest that there is no significant difference 
between HGS and alternate EHGS. A ’NaN’ p-value indicates that the data from both groups being compared 
are practically equivalent. We can observe that EHGS exhibits superior performance compared to the basic HGS 

Common 
parameters

Population size N 30

Maximum No. of 
iterations 1000

No. of runs 30

Significance level 
α (Friedman test) 0.05

Internal parameters

Algorithm Parameter Value

SCA

r1
Decreased 
linearly 
[2 0]

r2
Random 
values 
inside [0 
2π]

r3
Random 
values 
inside [0 2]

r4
Random 
values 
inside [0 1]

HGS

Hunger 
threshold 
(LH)

1000

Probability 
of updating 
position l

0.08

HHO Convergence 
constant (E)

Decreased 
linearly 
[2 0]

Table 6.  Settings for common and algorithm-specific parameters for HGS and comparison methods (BAT, 
HHO, and SCA).
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in a significant number of cases. The validity of these findings is reinforced by p-values ≤ 0.05, indicating that 
these improvements are statistically significant.

The Diversity results in Table 7 offer valuable information about the population diversity maintained by the 
HGS and the EHGS algorithms upon completion of the optimization process. A higher diversity means that 
the algorithm is exploring a wider range of the search space, which can prevent convergence and help to find 
better solutions. It is clear that the EHGS algorithm generally maintains a higher diversity compared to the basic 
HGS. The enhancements made to the algorithm help it to explore the search space better, which is important for 
solving complex optimization problems. The balance between exploration and exploitation in EHGS helps it to 
find better solutions while considering a broader set of potential solutions, making it more robust and reliable 
for the search process.

The comparative analysis of the convergence and diversity curves of EHGS and HGS across selected 
benchmark functions is demonstrated in Fig. 6. It was found that EHGS outperforms basic HGS with its superior 
performance. EHGS is more efficient in converging to lower fitness values, indicating a more effective search 
strategy for optimal solutions. Moreover, EHGS maintains higher solution diversity throughout the optimization 
process, ensuring a broader exploration of the search space. This minimizes the risk of premature convergence to 
local optima and highlights the algorithm’s enhanced robustness in complex optimization landscapes.

Comparison of EHGS with established metaheuristic methods
To further validate the effectiveness of EHGS, we compare it with three well-known metaheuristic algorithms, 
including Bat Algorithm (BA)107, Harris Hawks Optimization (HHO)36, and Sine Cosine Algorithm (SCA)108. 
The comparison between EHGS and these algorithms across F1-F30 functions is presented in Table 8. The average 

Function

HGS EHGS
Wilcoxon 
Rank Sun Diversity

Avg Std Avg Std P-value Sig. HGS EHGS

F1 4.1633E+08 1.49E+08 3.3732E+08 1.67E+08 0.0489 + 1.58E+05 2.08E+05

F2 2.9822E+10 1.02E+10 2.3447E+10 7.85E+09 0.0117 + 1.22E+05 1.42E+05

F3 8.6504E+04 7.54E+03 8.2105E+04 7.80E+03 0.0087 + 1.71E+04 1.90E+04

F4 3.7944E+03 1.84E+03 2.5521E+03 9.59E+02 0.0037 + 1.09E+05 1.14E+05

F5 5.2086E+02 1.33E–01 5.2083E+02 1.09E-01 0.5106 = 3.23E+05 2.87E+05

F6 6.4209E+02 2.36E+00 6.4260E+02 2.59E+00 0.4035 = 2.30E+05 1.25E+05

F7 8.9618E+02 7.23E+01 8.2818E+02 5.20E+01 0.0004 + 1.60E+05 1.58E+05

F8 1.0783E+03 2.20E+01 1.0607E+03 3.11E+01 0.0207 + 3.12E+04 3.96E+04

F9 1.2230E+03 3.57E+01 1.2107E+03 2.93E+01 0.1907 = 3.06E+04 3.52E+04

F10 7.4926E+03 6.28E+02 7.4912E+03 7.76E+02 0.9823 = 2.44E+05 1.85E+05

F11 7.9613E+03 8.04E+02 7.9018E+03 5.61E+02 0.4918 = 3.08E+05 2.50E+05

F12 1.2029E+03 5.94E–01 1.2023E+03 4.69E-01 0.0012 + 3.29E+05 2.57E+05

F13 1.3045E+03 7.45E–01 1.3039E+03 9.31E-01 0.0117 + 1.07E+05 1.41E+05

F14 1.5006E+03 2.24E+01 1.4672E+03 2.26E+01 0.0000 + 1.36E+05 1.35E+05

F15 2.0431E+04 1.46E+04 1.6567E+04 1.03E+04 0.4035 = 7.34E+04 7.60E+04

F16 1.6132E+03 4.25E–01 1.6131E+03 3.45E-01 0.5395 = 1.41E+05 2.37E+05

F17 4.7280E+07 4.11E+07 2.3024E+07 2.45E+07 0.0112 + 1.94E+05 2.00E+05

F18 8.8264E+07 1.11E+08 3.5572E+07 5.25E+07 0.0033 + 1.75E+05 1.71E+05

F19 2.1559E+03 1.06E+02 2.1314E+03 8.65E+01 0.3042 = 1.07E+05 1.49E+05

F20 3.1814E+05 2.27E+05 1.7785E+05 1.34E+05 0.0127 + 1.15E+05 1.24E+05

F21 2.4255E+07 2.16E+07 1.5993E+07 1.42E+07 0.1537 = 2.13E+05 2.68E+05

F22 3.7424E+03 8.56E+02 3.6339E+03 5.04E+02 0.9587 = 2.30E+05 2.85E+05

F23 2.5000E+03 0.00E+00 2.5000E+03 0.00E+00 NaN = 0.00E+00 5.86E-29

F24 2.6000E+03 0.00E+00 2.6000E+03 0.00E+00 NaN = 0.00E+00 2.43E-27

F25 2.7000E+03 0.00E+00 2.7000E+03 0.00E+00 NaN = 0.00E+00 1.78E-25

F26 2.7684E+03 4.55E+01 2.7649E+03 4.69E+01 0.6961 = 4.16E+04 8.53E+04

F27 2.9000E+03 0.00E+00 2.9000E+03 0.00E+00 NaN = 0.00E+00 2.15E-27

F28 3.0000E+03 0.00E+00 3.0000E+03 0.00E+00 NaN = 0.00E+00 6.12E-28

F29 3.1000E+03 0.00E+00 3.1000E+03 0.00E+00 NaN = 0.00E+00 6.66E-41

F30 3.2000E+03 0.00E+00 3.2000E+03 0.00E+00 NaN = 0.00E+00 9.50E-39

W|T|L 1|7|22 22|7|1 12|18|0

Table 7.  Comparative analysis of basic HGS and EHGS on IEEE CEC 2014 benchmark functions over 30 
independent runs, showing average, standard deviation, Wilcoxon test p-values, and significance (Sig.), 
indicating whether EHGS is superior, inferior, or equivalent to basic HGS. Significant values are in [bold].
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and standard deviation of the best-obtained fitness values for 30 independent runs are reported. The mean rank, 
which represents the algorithm’s average ranking, is derived from the Friedman test. Referring to Table 8, EHGS 
performs well across a variety of benchmark functions. When comparing EHGS to each algorithm individually, 
EHGS demonstrated superior performance compared to BAT on 29 out of 30 functions. In comparison with 
SCA, EHGS performed better on 19 functions. Against HHO, EHGS outperformed HHO on 16 functions, while 
HHO achieved better results on 9 functions, indicating competitive performance between the two algorithms. 

Fig. 6.  Convergence and diversity curves of HGS variants on sample of CEC2014 benchmarks.
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Function Measure BA HHO SCA EHGS

F1 AVG 1.985E+09 7.644E+08 4.295E+08 3.373E+08

STD 8.72E+08 2.37E+08 1.14E+08 1.67E+08

F2 AVG 9.109E+10 5.656E+10 2.515E+10 2.345E+10

STD 1.97E+10 8.55E+09 4.05E+09 7.85E+09

F3 AVG 3.475E+05 8.122E+04 6.293E+04 8.211E+04

STD 1.54E+05 6.22E+03 1.25E+04 7.80E+03

F4 AVG 2.058E+04 9.623E+03 2.311E+03 2.552E+03

STD 6.90E+03 2.93E+03 7.10E+02 9.59E+02

F5 AVG 5.203E+02 5.204E+02 5.210E+02 5.208E+02

STD 2.76E−01 2.16E−01 4.63E−02 1.09E−01

F6 AVG 6.471E+02 6.410E+02 6.362E+02 6.426E+02

STD 2.19E+00 2.77E+00 2.71E+00 2.59E+00

F7 AVG 1.642E+03 1.113E+03 9.214E+02 8.282E+02

STD 1.28E+02 8.29E+01 3.91E+01 5.20E+01

F8 AVG 1.168E+03 1.036E+03 1.075E+03 1.061E+03

STD 3.79E+01 2.01E+01 1.98E+01 3.11E+01

F9 AVG 1.314E+03 1.166E+03 1.204E+03 1.211E+03

STD 5.06E+01 3.09E+01 2.36E+01 2.93E+01

F10 AVG 7.939E+03 6.724E+03 7.894E+03 7.491E+03

STD 8.55E+02 7.16E+02 3.74E+02 7.76E+02

F11 AVG 8.198E+03 7.537E+03 8.563E+03 7.902E+03

STD 1.06E+03 7.87E+02 3.24E+02 5.61E+02

F12 AVG 1.204E+03 1.202E+03 1.203E+03 1.202E+03

STD 9.23E−01 6.03E−01 3.54E−01 4.69E−01

F13 AVG 1.309E+03 1.307E+03 1.304E+03 1.304E+03

STD 1.39E+00 8.95E−01 4.29E−01 9.31E−01

F14 AVG 1.723E+03 1.579E+03 1.472E+03 1.467E+03

STD 7.61E+01 2.87E+01 1.27E+01 2.26E+01

F15 AVG 5.287E+06 4.910E+04 1.926E+04 1.657E+04

STD 6.34E+06 2.68E+04 1.96E+04 1.03E+04

F16 AVG 1.614E+03 1.613E+03 1.613E+03 1.613E+03

STD 5.96E−01 3.32E−01 2.20E−01 3.45E−01

F17 AVG 1.192E+08 7.413E+07 1.560E+07 2.302E+07

STD 7.85E+07 5.46E+07 9.68E+06 2.45E+07

F18 AVG 4.933E+09 2.330E+09 3.359E+08 3.557E+07

STD 2.19E+09 1.59E+09 1.81E+08 5.25E+07

F19 AVG 2.642E+03 2.226E+03 2.021E+03 2.131E+03

STD 2.52E+02 9.58E+01 2.25E+01 8.65E+01

F20 AVG 5.509E+06 3.033E+05 3.835E+04 1.778E+05

STD 9.76E+06 3.34E+05 1.73E+04 1.34E+05

F21 AVG 6.249E+07 3.026E+07 3.549E+06 1.599E+07

STD 5.31E+07 3.09E+07 1.46E+06 1.42E+07

F22 AVG 6.009E+03 5.511E+03 3.260E+03 3.634E+03

STD 3.35E+03 7.92E+03 1.79E+02 5.04E+02

F23 AVG 3.705E+03 2.500E+03 2.721E+03 2.500E+03

STD 4.19E+02 0.00E+00 2.62E+01 0.00E+00

F24 AVG 2.792E+03 2.600E+03 2.606E+03 2.600E+03

STD 4.47E+01 2.54E−04 5.87E+00 0.00E+00

F25 AVG 2.820E+03 2.700E+03 2.736E+03 2.700E+03

STD 4.71E+01 0.00E+00 7.50E+00 0.00E+00

F26 AVG 2.799E+03 2.779E+03 2.704E+03 2.765E+03

STD 1.01E+02 3.93E+01 3.33E−01 4.69E+01

F27 AVG 4.278E+03 2.900E+03 3.763E+03 2.900E+03

STD 1.54E+02 0.00E+00 2.98E+02 0.00E+00

F28 AVG 6.989E+03 3.000E+03 5.391E+03 3.000E+03
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In terms of mean rank, EHGS achieved the first rank with a mean rank of 1.77, outperforming BAT (3.87), HHO 
(2.22), and SCA (2.15).

Evaluation of the proposed approach for logo classification
Following the successful validation of the proposed improvements to the HGS algorithm, this section assesses 
the application of the EHGS-optimized VGG16 framework for logo detection. Our investigation involves two 
main aspects: evaluating the performance of the customized VGG16 model and establishing a benchmark for 
accuracy in logo classification. Next, we will examine the effects of hyperparameter optimization using EHGS 
on this model.

Comparison of deep learning models
In this section, we have conducted a comprehensive analysis of various DL models, including VGG16, VGG16-
NP, DenseNet121, EfficientNetV0, InceptionV3, MobileNetV2, and ResNet. All these models utilize pre-trained 
weights on the ImageNet dataset, except for one variant of VGG16, which we refer to as VGG16-NP (not 
pretrained). Our analysis is based on the evaluation of classification quality metrics, such as accuracy, precision, 
and recall, as well as the inference time (testing time) of each model. We conducted five independent runs 
for each experiment and reported the results in terms of average and standard deviation. Moreover, we have 
visualized the training and validation accuracy curves over epochs, along with the training and validation loss.

Based on the outcomes reported in Table 9 and visualized in Figs. 7 and 8, it can be observed that VGG16 is 
the best-performing model in terms of average classification metrics, as indicated by its consistent performance 
across the box plots for accuracy, precision, and recall. EfficientNetV0 and MobileNetV2 are closely following 
VGG16 and offer competitive outcomes, as shown by the narrow interquartile ranges in their respective box 
plots. These models also exhibit consistency in their performance, as indicated by lower standard deviations. 
However, VGG16’s high accuracy comes with the trade-off of longer inference time. MobileNetV2 stands out for 
its exceptional balance between high classification accuracy and the lowest inference time, making it suitable for 
real-time applications that require both speed and precision.

Conversely, DenseNet121, InceptionV3, and ResNet display comparatively poor performance with 
significantly lower average scores in accuracy and recall. InceptionV3, despite having reasonable precision, 
exhibits low recall, indicating limitations in its ability to identify all relevant instances. Similarly, ResNet shows 

Model Measure

Classification quality

Inference tmeAccuracy Precision Recall

VGG16 AVG 0.956966 0.957137 0.956966 77.431

STD 0.008421 0.008646 0.008421 4.313

DensNet121 AVG 0.394004 0.699926 0.275132 38.010

STD 0.105727 0.122067 0.143514 3.087

EfficientNetV0 AVG 0.944974 0.949677 0.942328 22.042

STD 0.013089 0.010853 0.014605 0.386

InceptionV3 AVG 0.23545 0.783533 0.040741 18.541

STD 0.023539 0.143987 0.021039 0.255

MobileNetV2 AVG 0.943386 0.945192 0.943034 13.685

STD 0.014428 0.013762 0.014632 0.671

ResNET AVG 0.223457 0.634886 0.015344 33.608

STD 0.045445 0.197309 0.008586 4.785

VGG16-NP AVG 0.413051 0.630518 0.288183 77.045

STD 0.229115 0.228787 0.245976 0.568

Table 9.  Comparative evaluation of custom VGG16 and other DL models in terms of averaged classification 
metrics and inference timing over five independent runs. Significant values are in [bold].

 

Function Measure BA HHO SCA EHGS

STD 1.07E+03 0.00E+00 4.51E+02 0.00E+00

F29 AVG 1.066E+08 3.100E+03 2.497E+07 3.100E+03

STD 6.82E+07 0.00E+00 1.00E+07 0.00E+00

F30 AVG 3.696E+06 2.011E+05 5.780E+05 3.200E+03

STD 3.28E+06 5.56E+05 2.09E+05 0.00E+00

Mean rank 3.87 2.22 2.15 1.77

Table 8.  Comparison between EHGS and other metaheuristics on IEEE CEC 2014 functions over 30 
independent runs i terms of average and standard deviation. Significant values are in [bold].
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moderate precision but suffers from very low recall, which can be critical depending on the application. Lastly, 
DenseNet121 has the lowest accuracy and recall, which could be a concern for tasks requiring high reliability. 
Our study focuses on identifying the model that demonstrates the best classification quality overall. As a result, 
VGG16 is recognized as the best-performing model in this study, prioritizing comprehensive classification 
quality.

Fig. 8.  Bar chart of classification metrics reflecting results in Table 9.

 

Fig. 7.  Box-and-whiskers plot of deep learning model performance in terms of classification quality and 
inference time.
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The Wilcoxon Signed-Rank Test results, shown in Table 10, present the comparative performance of the 
VGG16 model with other tested models across accuracy, precision, recall, and inference time. The p-values 
indicate statistical significance, with VGG16 showing superior performance (+) in accuracy, precision, and recall 
compared to DenseNet121, InceptionV3, ResNet, and VGG16-NP, as denoted by p-values below the significance 
level of 0.05. However, VGG16 demonstrates equivalent performance (=) with EfficientNetV0 and MobileNetV2 
across classification quality measures, as indicated by the non-significant p-values. In terms of inference time, 
VGG16 exhibited a statistically higher time compared to all other models except VGG16-NP.

Table 11 presents the number of epochs required for different DL models to reach an early stopping point 
over 5 independent runs, with the last column displaying the average number of epochs across these runs. Early 
stopping is a form of regularization used to prevent overfitting by terminating the training process if the model’s 
performance on a validation set does not improve for a specified number of epochs. From the table, we can 
observe that VGG16 and its non-pretrained version, VGG16-NP, require more epochs to train, averaging 13.6 
and 13.8 epochs, respectively. This suggests a slower convergence to the early stopping threshold. MobileNetV2 
outperforms both, with the highest average of 14.2 epochs. This could indicate a stronger resistance to overfitting 
or simply a learning pattern that favors longer training periods before meeting the early stopping criteria. On the 
otherhand, ResNET reaches the early stopping point significantly faster, with an average of only 6.2 epochs. This 
suggests that ResNET either achieves optimal validation performance quickly or overfits to the training data at 
an early stage.

The visualizations in the form of accuracy and loss curves for various DL models provide insights into their 
learning behavior over epochs. behaviors are illustrated in Figs. 9 and 10. It is clear that VGG16, EfficientNetV0, 
and MobileNetV2 show higher and more stable accuracy over epochs, indicating robust learning and 
generalization. In contrast, DenseNet121, InceptionV3, ResNet, and the VGG16-NP variant exhibit less stable 
learning, with either declining accuracy, indications of overfitting, or high variability in loss.

Impact of EHGS on hyperparameter tuning
This section explores the impact of the basic HGS and EHGS algorithms on the hyperparameter tuning of the 
VGG16 model. The goal is to demonstrate the improvements in classification quality achieved through these 
optimization methods. The performance of HGS and EHGS is also compared with the traditional grid search 
method and Multi-Scale Delaunay Triangulation (msDT)101, as previously applied in a published study using 
the same dataset. Experiments involving the HGS and EHGS algorithms were performed using consistent 
parameters: 20 iterations, a population size of 10, and 5 independent runs. These experimental parameters were 

Model Run 1 Run 2 Run 3 Run 4 Run 5 Average

VGG16 14 15 10 14 15 13.6

DensNet121 6 8 13 10 7 8.8

EfficientNetV0 15 13 15 11 10 12.8

InceptionV3 7 6 6 10 6 7

MobileNetV2 15 15 13 13 15 14.2

ResNET 6 6 7 6 6 6.2

VGG16-NP 15 15 9 15 15 13.8

Table 11.  Comparison of DL models on early stopping epoch counts across five training runs. Significant 
values are in [bold].

 

Model Measure

Classification Quality

Inference TimeAccuracy Precision Recall

DensNet121 P-value 4.311E−02 4.311E−02 4.311E−02 4.311E−02

Sig. + + + -

EfficientNetV0 P-value 7.962E−02 2.249E−01 7.962E−02 4.311E−02

Sig. = = = -

InceptionV3 P-value 4.311E−02 7.962E−02 4.311E−02 4.311E−02

Sig. + = + -

MobileNetV2 P-value 2.249E−01 2.249E−01 2.249E−01 4.311E−02

Sig. = = = -

ResNET P-value 4.311E−02 4.311E−02 4.311E−02 4.311E−02

Sig. + + + -

VGG16-NP P-value 4.311E−02 4.311E−02 4.311E−02 6.858E−01

Sig. + + + =

Table 10.  Wilcoxon Signed-Rank Test results for pairwise comparison of VGG16 with other tested models 
across accuracy, precision, recall, and inference time. Significant values are in [bold].
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carefully chosen to ensure a thorough exploration of optimal hyperparameters while balancing computational 
cost and overall performance.

As shown in Table 12 and Fig. 11, the VGG16 model with predefined parameters achieved an accuracy of 
95.70%, precision of 95.71%, and recall of 95.70%. Applying the traditional grid search for hyperparameter 
tuning yielded a slight improvement, with accuracy, precision, and recall increasing to 96.00%, 96.10%, and 
96.00%, respectively. In contrast, the Multi-Scale Delaunay Triangulation approach resulted in significantly 

Fig. 9.  Learning and validation performance trends for VGG16, DensNet121, EfficientNetV0, and 
InceptionV3.
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lower accuracy, reaching only 55%. By utilizing evolutionary optimization for hyperparameter tuning, the HGS 
algorithm offered further enhancements over both the predefined VGG16 model and traditional grid search, 
achieving accuracy, precision, and recall values of 96.50%, 96.60%, and 96.50%, respectively. EHGS scored 
the highest performance metrics, with an accuracy of 98.00%, precision of 98.10%, and recall of 98.00%. This 
superior performance is likely due to its advanced mechanisms, such as the ”local best” and ”local escaping 
mechanism,” which enhance both exploration and diversity, leading to better hyperparameter configurations. 

Fig. 10.  Learning and validation performance trends for MobileNetV2, ResNet, and VGG16-NP.
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Fig. 12.  Convergence curves for HGS and EHGS for hyperparameter tuning of the VGG16 model over 20 
iterations, averaged across 5 runs.

 

Fig. 11.  Bar chart comparing the classification metrics for predefined parameters, Basic HGS, and EHGS as 
detailed in Table 12.

 

Model Accuracy Precision Recall

Predefined VGG16 0.9570 0.9571 0.9570

HGS_VGG16 0.9650 0.9660 0.9650

EHGS_VGG16 0.9800 0.9810 0.9800

Traditional Grid Search 0.960 0.961 0.960

multi-scale Delaunay triangulation101 0.55 - -

Table 12.  Performance metrics of VGG16 model with predefined parameters, VGG16 with traditional grid 
search, HGS-VGG16, EHGS-VGG16, and multi-scale delaunay triangulation. Significant values are in [bold].
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These findings establish a new performance benchmark for the VGG16 model on this dataset and confirm the 
effectiveness of EHGS in achieving high classification quality.

The convergence curves for HGS and EHGS are depicted in Fig. 12. The curves indicate that both algorithms 
achieve rapid initial improvements in accuracy within the first few iterations. However, as the iterations progress, 
EHGS shows a slightly faster rate of convergence. This trend highlights the superior ability of the EHGS algorithm 
to avoid premature convergence and continue improving effectively. Through the final iterations, EHGS achieves 
a higher overall accuracy compared to HGS, confirming the benefits of its improved mechanisms in improving 
the hyperparameter tuning of the VGG16 model.

In conclusion, these results highlight the significant enhancement in performance of the VGG16 model on 
logo classification tasks by incorporating evolutionary optimization techniques, in particular Enhanced HGS. 
This hybrid approach effectively exploits the strengths of evolutionary and deep learning algorithms.

Conclusion and future works
This study presented an optimized deep learning framework, EHGS-VGG16, which leverages an enhanced 
variant of the Hunger Games Search (EHGS) to tune hyperparameters of the VGG16 model for logo classification 
tasks. Incorporating EHGS demonstrated significant improvements in model accuracy, precision, and recall. The 
evaluation process included three phases: testing the EHGS through the IEEE CEC2014 benchmark functions, 
evaluating the performance of the custom-developed VGG16 model against state-of-the-art deep learning 
models, and integrating the EHGS for hyperparameter optimization. The results showed that the EHGS-VGG16 
model achieved a remarkable accuracy of 98%, with an increase of 3% compared to the basic predefined VGG16 
model. Even a small increase in classification accuracy can lead to meaningful benefits in practical applications, 
such as more reliable brand monitoring, better copyright protection, and improved user engagement through 
targeted advertising.

Despite these promising results, the study has several limitations. Theoretically, while the EHGS algorithm 
performed well in benchmark tests, it still faces challenges like local optima entrapment and finding an optimal 
trade-off between exploration and exploitation, which can affect its efficiency in certain complex optimization 
tasks. From a practical perspective, the experiments were conducted using the Flickr-27 dataset, which is 
relatively small compared to other available datasets. As such, the results may not fully generalize to large-
scale, real-world logo classification tasks with higher variability and noise. Furthermore, while EHGS enhances 
model accuracy, its iterative optimization process increases computational time compared to standard training 
procedures, which may limit its feasibility for time-sensitive applications.

Future work will focus on addressing these limitations. We plan to evaluate the EHGS-VGG16 framework 
on larger and more diverse datasets to ensure its robustness and generalizability. Some of these datasets include 
the Logo-2K+, FlickrLogos-32, and FlickrLogos-47. In addition, we will explore the application of the EHGS-
VGG16 model to other image classification tasks, such as object detection and facial recognition, to extend its 
utility beyond logo classification. Moreover, we aim to investigate the integration of other advanced evolutionary 
algorithms, such as the Crow Search Algorithm (CSA) and Capuchin Search Algorithm (CapSA), to further 
optimize the hyperparameter tuning process and enhance the model’s performance. Given the excellent 
performance of EHGS, it will be valuable to validate it to handle other challenging practical applications such as 
image segmentation and feature selection problems.

Data availability
The data involved in this study is public data, which can be downloaded through ​h​t​t​p​:​/​/​i​m​a​g​e​.​n​t​u​a​.​g​r​/​i​v​a​/​d​a​t​a​
s​e​t​s​/​f​l​i​c​k​r​_​l​o​g​o​s​/​​
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