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Quantifying Relational Exploration in Cultural Heritage
Knowledge Graphs with LLMs: A Neuro-Symbolic Approach for
Enhanced Knowledge Discovery
Mohammed Maree

Faculty of Information Technology, Arab American University, Jenin 00970, Palestine;
mohammed.maree@aaup.edu; Tel.: +970-4-2418888 (ext. 1160)

Abstract: This paper introduces a neuro-symbolic approach for relational exploration in
cultural heritage knowledge graphs, exploiting Large Language Models (LLMs) for expla-
nation generation and a mathematically grounded model to quantify the interestingness of
relationships. We demonstrate the importance of the proposed interestingness measure
through a quantitative analysis, highlighting its significant impact on system performance,
particularly in terms of precision, recall, and F1-score. Utilizing the Wikidata Cultural
Heritage Linked Open Data (WCH-LOD) dataset, our approach achieves a precision of 0.70,
recall of 0.68, and an F1-score of 0.69, outperforming both graph-based (precision: 0.28,
recall: 0.25, F1-score: 0.26) and knowledge-based (precision: 0.45, recall: 0.42, F1-score: 0.43)
baselines. Furthermore, the proposed LLM-powered explanations exhibit better quality, as
evidenced by higher BLEU (0.52), ROUGE-L (0.58), and METEOR (0.63) scores compared to
baseline approaches. We further demonstrate a strong correlation (0.65) between the inter-
estingness measure and the quality of generated explanations, validating its ability to guide
the system towards more relevant discoveries. This system offers more effective exploration
by achieving more diverse and human-interpretable relationship explanations compared to
purely knowledge-based and graph-based methods, contributing to the knowledge-based
systems field by providing a personalized and adaptable relational exploration framework.

Keywords: knowledge graphs; large language models (LLMs); explainable AI (XAI);
cultural heritage; neuro-symbolic AI; interestingness score; contextual relevance;
personalized explanation

1. Introduction
The digital age has ushered in an unprecedented era of data proliferation, significantly

impacting how we access, preserve, and interact with cultural heritage (CH). The digiti-
zation of cultural heritage artifacts, historical records, and intangible cultural expressions
has resulted in massive repositories of interconnected information, often formalized as
knowledge graphs (KGs) [1,2]. These knowledge graphs, while valuable, present a signifi-
cant challenge: how do we effectively navigate, explore, and extract meaningful insights
from this intricate web of interconnected data? Simple keyword searches often prove
insufficient, failing to capture the nuanced relationships and hidden narratives woven
within these datasets [3]. For example, a simple query for “paintings from the 18th century”
might not reveal the connections between artists, movements, and places that shaped
artistic production during that period. Thus, the field of relational search—the discovery of
connections and relationships between entities within these knowledge graphs—becomes
paramount. This goes beyond mere data retrieval, enabling us to uncover the complex
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patterns, hidden connections, and narratives embedded in our cultural heritage that would
otherwise remain obscured. Relational search can reveal relationships such as the influence
of different cultures on the work of an artist, the political and historical context of certain
events, and the evolution of artistic styles across time.

Traditional approaches to relational search in cultural heritage KGs have primarily
relied on two main paradigms: graph-based methods and knowledge-based approaches.
Graph-based methods, such as Breadth-First Search (BFS) or Depth-First Search (DFS),
while able to explore the KG structure systematically [4,5], treat the graph as a simple
network of nodes and edges, ignoring the rich semantic meaning encoded in the data.
These methods may retrieve a large number of paths between entities, but many of them
are semantically trivial or irrelevant to a user’s query. They also lack the adaptability
needed to address the needs of users with diverse backgrounds and interests. For example,
BFS might present simple connections like “artist A was born in place B” but fail to highlight
more insightful connections such as “artist A’s work was influenced by the art of place C”,
or “artist A’s work was part of the art movement of place D”. These methods lack the ability
to provide a deeper understanding of the relations between entities. On the other hand,
knowledge-based approaches [6,7] leverage ontologies, predefined rules, and structured
vocabularies (e.g., using CIDOC CRM or SPARQL-based methods) to perform a relational
search. Although providing more accurate results by incorporating domain knowledge,
they are limited by the rigid scope of the predefined rules and templates. They require
significant manual engineering and are often brittle and difficult to adapt to evolving needs,
diverse user requirements, and emerging new insights. These methods, while improving
on the semantic understanding, fail to provide the flexibility and adaptability needed to
uncover the diverse and nuanced relationships found in complex cultural heritage data,
as they often rely on simple text templates to present the relationships. They also fail
to take into account the user needs and expertise. For instance, a user with advanced
knowledge of a specific artist might be interested in very specific types of relationships,
while other users may only be interested in more general types of relationships. Moreover,
both traditional graph-based and knowledge-based methods fall short in one critical aspect:
personalized and human-understandable explanations. They often produce results in
forms that are difficult to interpret by an end-user, such as a list of entities or graph paths.
The lack of context and meaningful explanations makes it difficult for users to grasp the
full implications of the discovered relationships. Existing systems also typically ignore
the diverse expertise of end-users, failing to deliver results that are truly relevant to their
individual needs and interests. For example, explanations based on predefined rules or
simple path traversals fail to convey the richness and complexity of the relationship and
fail to adapt to the user needs.

Recognizing these limitations, this paper introduces a novel approach combining the
capabilities of Large Language Models (LLMs) with a mathematical model for quantifying
the “interestingness” of discovered relationships. The motivation behind this research stems
from the need to move beyond systems that simply present data and create a system that ac-
tively guides the user to discover relevant connections and explains them in a personalized
and human-understandable way. We aim to create a system that is able to learn complex re-
lationship patterns, adapt to the specific needs of end-users, and generate high-quality and
human-understandable explanations. The key insight of our work lies in the observation
that relational search requires not only the discovery of relationships but also the generation
of human-interpretable explanations that are contextually relevant and tailored to the user.
Unlike approaches that focus solely on object classification or simple link prediction, we
aimed to create a comprehensive system for the generation of high-quality explanations
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that were based on the relationships between different entities. Our specific objectives
were to:

* Generate contextually relevant and diverse explanations: LLMs are trained on massive
text corpora, giving them a much richer understanding of language and context than
traditional NLP models. They can grasp the subtle relationships between concepts and
generate explanations that are more nuanced and insightful. As such, we leveraged
the power of LLMs to produce more diverse and flexible explanations that go beyond
predefined templates. These explanations were able to adapt to the specific semantic
context of the relationships, enhancing the user’s comprehension of the discovered
information. We aimed at creating explanations that go beyond simple information
and provide deep insights about the discovered relationships.

* Personalize explanations by considering user context: LLMs are designed to provide
explanations that are much easier for users to understand compared to graph paths or
complex SPARQL queries. We achieved this by prompting the LLM with structural
text that contains connection information as well as context and letting the LLM
create a response based on the structural text. In this context, we aimed at creating
a system that provides personalized explanations by considering the user’s current
context, preferences, knowledge, and past interactions, ensuring that the presented
explanations are both relevant and engaging. This is achieved by allowing the user
to define specific parameters or interests, as well as implicitly by taking into account
past interactions and expertise.

* Quantify relationship interestingness using a mathematical model: We introduced
a novel mathematical model to assess the interestingness of relationships. This model,
which combines measures of semantic relatedness within the graph and contextual
relevance to a specific user, enabled our system to effectively guide the exploration
process, revealing non-trivial and valuable connections. This provided an objective
and data-driven approach to guide the exploration process, moving beyond simple
relevance and enabling the discovery of non-obvious connections.

The rest of this article is structured as follows. Section 2 reviews existing relational
search methods, highlighting their limitations. It also introduces our methodology, detailing
connection discovery, the mathematical model for scoring interestingness, and our use of
LLMs for explanation generation. Section 3 describes the experimental setup, including
dataset information, implementation specifics, and evaluation procedures. In this section,
we also present and discuss the quantitative performance metrics. Finally, Section 4
summarizes our conclusions and outlines avenues for future research.

2. Materials and Methods
The challenge of uncovering meaningful connections within knowledge graphs (KGs)

has spurred a diverse range of research efforts [2,5,8–24]. In this section, we explore and dis-
cuss existing techniques, grouping them into relevant categories with an emphasis on their
strengths and limitations. We have organized these techniques into knowledge-agnostic
graph traversal methods, knowledge-based approaches, explainable AI in knowledge
graphs, and the emerging use of LLMs in knowledge graph reasoning.

2.1. Knowledge-Agnostic Graph Traversal

These methods operate on the structural properties of the KG, treating it as a network
of interconnected nodes and edges. They aim to find relationships between entities without
relying on the semantic meaning of the data itself. This makes them generalizable but
also prone to generating a lot of irrelevant results [8]. In addition, these approaches are
based on simple graph traversal methods. For example, using fundamental algorithms
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such as the Breadth-First Search (BFS) and Depth-First Search (DFS), relationships between
nodes are systematically explored in KGs [9]. BFS starts from a source node and visits all its
neighbors before moving to the next level, while DFS explores as far as possible along each
branch. Although these approaches can find all reachable nodes or paths between nodes,
they are computationally expensive in large KGs and frequently generate numerous paths
that are semantically trivial. They often produce a combinatorial explosion of results that
are uninteresting or obvious to a user, requiring manual post-processing and filtering [10].
Other algorithms, like Dijkstra’s and A*, find the shortest path between two entities based
on edge weights or hop counts. Methods like WiSP [11] can be used to find the most
direct paths, but still do not capture semantic relatedness or relevance to the user’s context.
Although these algorithms can find the most direct connection between entities, that path
may not always be the most relevant, surprising, or informative for relational exploration,
and might be too simplistic to capture the nuances of the relationships [12].

On the other hand, Random Walk and Path Ranking techniques simulate a random
walk across the graph to compute node importance and explore connectivity. Methods
like Personalized PageRank use random walks to identify relevant results for specific
nodes; however, while these methods are scalable and more efficient than other graph
traversal methods, they do not typically capture the rich semantics of relationships and user
context [13]. They also can produce many irrelevant and uninterpretable paths. Accordingly,
we would like to point out that, while efficient for exploring the structure of KGs, these
knowledge-agnostic methods fall short in addressing the core problem of relational search.
They are not guided by any form of domain understanding, and therefore, often generate
a plethora of irrelevant results and provide limited explanations that lack context. The
paths are not always human understandable, and do not provide deep explanations of the
relationship discovered.

2.2. Knowledge-Based Approaches

These techniques leverage domain-specific knowledge, often encoded in ontologies,
rules, and schemas, to guide the relational exploration, but at the expense of flexibility and
manual engineering [2,14]. These techniques aim to mitigate some of the limitations of
purely graph-based approaches by incorporating more structure and semantics. For in-
stance, ontology-based search methods use formal ontologies (e.g., CIDOC CRM) to reason
about relationships between entities [2]. While ontologies provide a structured vocabulary
for representing knowledge, they are mostly designed for structured data retrieval and
do not provide the flexibility or ability to generate natural language explanations that are
tailored to a user. They are often more suitable for querying structured data instead of
providing explanations. On the other hand, SPARQL-based approaches use the SPARQL
query language to specify precise patterns of interest [15]. SPARQL offers a powerful way to
extract complex data from RDF graphs. However, such approaches often rely on manually
created queries and predefined templates for explanations, which are brittle and hard to
adapt to varying user needs or different contexts. In a similar line of research, rule-based
methods use predefined rules to infer and discover new relations [5]. Although they can
provide some level of domain-specific reasoning, they are generally limited by the scope
of the rules and their lack of adaptability. Moreover, these rules need to be specified by
domain experts which increases the workload in creating, maintaining, and adapting them
for different scenarios. These approaches address precision to some extent but are limited
by the scope of predefined rules and templates, as well as their lack of personalization.
As noted in our introduction, they fail to capture the nuances of relationships and are not
adaptable to varying user contexts [16,17]. Accordingly, these approaches lack the ability
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to provide flexible explanations for a varied number of users in real-world application
contexts and settings.

2.3. Explainable AI in Knowledge Graphs

Explainable AI (XAI) in the context of KGs aims to provide human-understandable
explanations for the relationships discovered in the graphs. However, this area is still in
early stages and faces some limitations. For instance, in path-based explanation methods,
like RelFinder [18], connections are visualized as graph paths or subgraphs connecting
two or more entities. However, these paths and subgraphs might be hard to interpret
and understand, especially for users who are not domain experts, or have no technical
background. These methods also do not provide natural language explanations [19].
Other subgraph-based explanation methods extract a portion of the knowledge graph
to create an explanation that provides more context than simple paths [20]. However,
subgraphs still require some effort for interpretation by end users, as it is not presented
in natural language. In addition, as reported in [21], such methods require substantial
computational resources, leading to extensive utilization of approximation techniques and
other optimization approaches. Other Graph Neural Networks (GNNs) have also been
applied for reasoning and link prediction [22,23]. While GNNs can learn complex patterns
and produce good results on link prediction, they are also very complex to interpret, as
they often operate as black boxes and are not suitable for generating natural language
explanations to the end-user [24]. As reported in a recent review in [25], there are four
open problems, including robustness, interpretability, pretraining, and complex structure
modeling, that still form a major challenge for GNNs and hinder their exploitation in
real-world and practical application domains, such as the CH domain. Therefore, while
these methods try to address the lack of transparency of AI systems, they still struggle to
create rich, human-readable, and context-aware explanations that go beyond just graph
paths or subgraphs. They often lack the ability to tailor explanations to the context or
knowledge level of the user and require a level of technical expertise.

2.4. Large Language Models in Knowledge Graph Reasoning

The use of Large Language Models (LLMs) in KG applications is an emerging field.
Although LLMs are showing great potential in many other areas, their integration with
relational search in KGs is still in early stages. For instance, LLMs can answer questions
based on the information available in KGs. They can extract relevant entities, use reasoning
and language understanding, and provide answers to natural language questions. More-
over, they can be trained on KG embeddings for performing link prediction, by learning
representations of nodes and relationships. However, these approaches often focus on
the accuracy and efficiency of link prediction but do not focus on generating high-quality
explanations. On the other hand, recent research attempts have explored methods for
fusing neural networks with symbolic knowledge representations for explainable AI. These
approaches, including the work of Díaz-Rodríguez et al. [26] and Arrieta et al. [27], combine
a neural network for image classification with a knowledge graph to guide the detection
of object-parts.

These approaches use a knowledge graph and a neural network in a fused way to
train the neural network, where the knowledge graph is used as a form of regularization.
However, they do not make use of an LLM for generating natural language explanations,
nor do they use a user context for tailoring explanations. They also do not focus on
relational exploration, but rather on improving the performance and explainability of
object classification through the use of a knowledge graph. Therefore, our goal is to go
beyond simply retrieving data from the knowledge graph. Instead, we aim to generate
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human-understandable explanations of connections and guide the search towards more
interesting relationships, facilitating deeper insights. Also, LLMs are typically not used
with a mathematical model for guiding the explanations, as proposed in this work, or use
a user context for personalizing results.

2.5. Connection Discovery

Our approach applies a neuro-symbolic framework that combines elements of
knowledge-based systems with the power of LLMs, augmented by a novel mathematical
model to guide both the selection of connections and the generation of their explanations.
This methodology was designed to enhance the process of relational exploration, to enable
users to discover and understand complex, non-obvious connections within a knowledge
graph in a personalized way. Unlike approaches focused on tasks such as object classifica-
tion, our goal is to provide a comprehensive system to generate explanations based on the
relationships between entities, rather than focusing only on the properties of each entity. As
depicted in Figure 1, this process was broken down into three main stages, each building
upon the previous one: Stage 1: Connection Discovery; Stage 2: Interestingness Scoring;
and Stage 3: Explanation Generation.
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This initial stage (Stage 1: Connection Discovery) is dedicated to identifying poten-
tial relationship instances between entities within the knowledge graph. This step is not
focused on extracting all possible relations between all entities, but rather to extract in-
stances of relations that match predefined patterns of connections between entities that
are commonly found in the domain. This helps to prune down the search space and avoid
the problem of a combinatorial explosion of results. To achieve this, we utilize a series
of SPARQL CONSTRUCT queries, which leverage the semantic structure of the KG to
identify relationship patterns. Instead of producing explanation instances directly at this
step, the SPARQL queries generate candidate connections, which can be analyzed using our
mathematical model. In addition, Algorithm 1 and Figure 2 below detail the pseudo-code
and steps for discovering connections between entities.

Specifically, we have identified several common types of relationships between entities,
which are encoded in our set of SPARQL queries. For example:

* “Person X was born in place Y”;

* “Person X works in place Y”;

* “Person X wrote a book about place Y”;

* “Person X created a painting that depicts place Y”.



Data 2025, 10, 52 7 of 19

Algorithm 1 Connection Discovery

Input:

	 KG: The knowledge graph.
	 SPARQL_Queries: A set of SPARQL CONSTRUCT queries defining

relationship patterns.

Output: Connection_Candidates CC: A set of candidate relationship instances.

1. CC = < > an empty list.
2. For each SPARQL_Query in SPARQL_Queries:

# Execute the SPARQL_Query on the KG.
# For each result found by the SPARQL_Query:

■ Create a connection_instance object including:

* The identifier of the two connected entities

* The type of relationship between them

* Relevant metadata such as times or additional information

* A simple textual label for the relationship

■ Add connection_instance to Connection_Candidates.

3. Return CC.

The results of the queries are used to produce sets of data that contain all the basic
information required to compute our interestingness score. Each connection instance
will contain:

* entity1_id: The identifier of the first connected entity;

* entity2_id: The identifier of the second connected entity;

* relationship_type: The type of relationship connecting the entities;

* relevant_metadata: Relevant metadata, such as times or additional information
(when available) ;

* explanation_text: A simple textual label describing the relationship—this will later be
used by the LLM for generating explanations.

This stage, therefore, provides a foundation for the next stage (Stage 2: Interestingness
Scoring) by generating a set of candidate relationships to explore. While traditional met-
rics like semantic relatedness (SR) and relevance capture intrinsic connections and filter
irrelevant data, they often fail to identify relationships genuinely surprising, insightful, or
valuable to a specific user. To address this, our design emphasizes personalized exploration
through an ‘interestingness’ metric, incorporating both SR (to guide the model towards
semantic connections) and contextual relevance (CR) to ensure identified relationships are
not only connected but also personally relevant and engaging, pushing beyond the obvious
and highlighting novel, insightful connections within the user’s profile and the overall
knowledge graph.

The core of our approach lies in our novel mathematical model for quantifying the
interestingness of a given relationship instance. We do so by combining the notions of
semantic relatedness within the knowledge graph, and the contextual relevance of the
connection to a specific user.
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As depicted in Figure 3, our ‘interestingness’ metric, I(r), combines semantic related-
ness, SR(e1, e2), and contextual relevance, CR(r, U), to prioritize relationships that are
not only intrinsically connected but also aligned with the user’s specific needs and interests.
We chose to incorporate both SR and CR because SR captures the inherent connections
within the graph, while CR ensures the discovered relationships are relevant to the user’s
unique context. Accordingly, I(r) is given by Equation (1):

I(r) = α ∗ SR(e1, e2) + (1 − α) ∗ CR(r, U) (1)

where:

* I(r): The overall interestingness score of the relationship instance r between entities
e1 and e2;

* SR(e1, e2): The semantic relatedness score between entities e1 and e2—this quantifies
how closely related two entities are in the context of the graph structure;

* CR(r, U): The contextual relevance score of the relationship r to the user’s context
U—this takes into consideration the user’s preferences, history, and expertise;

* α: A weight parameter (0 ≤ α ≤ 1) that balances the influence of semantic relatedness
and contextual relevance.
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The parameter α is used to control the balance between semantic relatedness and the
user context. A value of α close to 1 will give more weight to the semantic relatedness
measure, and a value closer to 0 will give more weight to the contextual relevance. The
parameter α can be customized by the user, or it can be automatically set by the system by
using a user profile.

2.5.1. Semantic Relatedness (SR)

Semantic relatedness measures the intrinsic relationship between two entities based
on the connectivity and diversity of paths linking them in the KG. Our formulation favors
shorter, more diverse paths, which often indicate a more meaningful semantic connection.
The semantic relatedness score is calculated using Equation (2) as follows:

SR(e1, e2) = (1/(|P|+ 1)) ∗ Σ (1/dist(pi)) (2)

where:

* P: The set of all simple paths connecting entity e1 and e2 within the KG—a simple
path is a path that does not visit a node twice;

* |P|: The total number of simple paths connecting e1 and e2;

* dist(pi): The length of the i − th path pi, measured as the number of edges traversed.

The term (1/(|P|+ 1)) is a normalization factor that takes into account path diver-
sity. The higher the path diversity (the more paths are available), the lower the semantic
relatedness score will be.

2.5.2. Contextual Relevance (CR)

Contextual Relevance captures how well a given relationship aligns with a user’s
current needs and preferences. We use a similarity measure between vector embeddings of
both the relationship and the user’s context. The contextual relevance is computed using
Equation 3 as the cosine similarity between these embeddings:

CR(r, U) = cosine(v(r), v(U)) (3)

where:

* v(r): The vector embedding of the textual description of the relationship r, generated
by a Large Language Model (LLM).

* v(U): The vector embedding of the user’s context U, also generated by an LLM. The
user context U can be a concatenation of different types of information: search history,
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domain expertise, specified user interests or other available information. The LLM
can take this combined context information to generate the embeddings.

* cosine(v(r), v(U)): The cosine similarity between the embeddings of v(r) and v(U).
The score ranges from −1 to 1, with values closer to 1 indicating a higher degree of
contextual relevance.

This step introduces the use of LLMs in the system, by allowing the system to process
natural language and create suitable vector embeddings.

2.6. Explanation Generation with LLMs

Once the interestingness score has been computed, we use an LLM (Stage 3: Expla-
nation Generation) to generate a human-readable natural language explanation. The
LLM is prompted with a structured set of information about the connection instances,
which includes:

* entity1_description: A concise description of the first entity;

* entity2_description: A concise description of the second entity;

* relationship_type: The type of relationship connecting the two entities;

* interestingness_score: The value of I(r);

* user_context_description: A textual representation of the user’s context U.

As shown in Figure 4, the following prompt structure is used to generate explanations,
which is given to the LLM:
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“Generate a natural language explanation that connects ‘entity1_description’ and
‘entity2_description’.

The relationship type is ‘relationship_type’.
The interestingness score is: ‘interestingness_score’.
The user context is: ‘user_context_description’.
Explain this relationship in a way that reflects its interestingness, and the user context.

Be specific, and avoid generic statements that could apply to other entities.”
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The LLM uses the provided information to create an explanation that reflects the com-
puted interestingness score and the user-specific context. The LLM is explicitly prompted
to create a personalized explanation that highlights the nuances and significance of the
relationship. The LLM is explicitly instructed to create non-generic explanations, and to
use any other relevant information that may improve the quality of the final explanation.
We also provide different types of examples to the LLM in order to facilitate and guide it
towards creating high-quality explanations as described in Algorithm 2 below.

Algorithm 2 Explanation Generation

Input:

	 Connection_Candidates: A set of candidate relationship instances.
	 User Context U: A user context vector.
	 LLM: The Large Language Model.

Output: Connection_Candidates CC: The same set of connections, but with the addition
of natural language explanation for each instance.

1. For each connection instance r in Connection_Candidates:

# Compute SR(e1, e2) with the KG, using formula (Equation (2)) (where e1 and
e2 are the entities linked by r).

# Compute v(r) and v(U) vector embeddings using the LLM.
# Compute CR(r, U) using cosine(v(r), v(U)) (Equation (3)).
# Compute the I(r) using α ∗ SR(e1, e2) + (1 − α) ∗ CR(r, U) (Equation (1)).
# Prompt the LLM with the following instruction:

“Generate a natural language explanation that connects entity1_description
and entity2_description. The relationship type is relationship_type. The
interestingness score is: interestingness_score. The user context is:
user_context_description. Explain this relationship in a way that reflects its
interestingness, and the user context. Be specific, and avoid generic statements
that could apply to other entities.”

# Add the generated LLM explanation to the connection_instance.

2. Sort the connections based on the interestingness score I(r)
3. Take the top k connections, as specified by the user
4. Return CC (top k), with the explanations.

This three-stage process combines the precision of knowledge-based methods with
the flexibility of LLMs and the formal rigor of our mathematical model. This approach
allows to go beyond simple retrieval and exploration, and allows to generate personalized
explanations, based on a user’s specific needs.

3. Results
This section details the experimental setup and experiments conducted to evaluate

our neuro-symbolic framework for relational exploration, employing the public Wikidata
Cultural Heritage Linked Open Data (WCH-LOD) dataset. We describe the data selection
process, our implementation choices, the baseline methods used for comparison, and the
evaluation metrics we have used.

3.1. Dataset

We utilized the Wikidata Cultural Heritage Linked Open Data (WCH-LOD) dataset,
a publicly available RDF knowledge graph accessible at https://query.wikidata.org/
(accessed on 5 December 2024). This dataset is specifically curated for cultural heritage

https://query.wikidata.org/
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research and contains a wide range of entities, including historical figures, places, events,
and artworks, along with their semantic relationships. Due to the large scale of the full
dataset (comprising over 135 million triples), we focused our evaluation on a specific, yet
representative, subset of the data. Figure 5 depicts a screenshot for the Wikidata Query
Service with a sample SPARQL query that we used for acquiring respective data.
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We specifically targeted entities and relationships that were directly or indirectly con-
nected to five key concepts: “Paintings” (wd:Q3305213), “Painters” (wd:Q1028181), “Muse-
ums” (wd:Q33506), “Places” (wd:Q173557), and “Historical Events” (wd:Q1190554). These
concepts were chosen because they represent a diverse range of interconnected entities
commonly found in cultural heritage knowledge, and provide a useful and representative
set of relations. We included all entities linked to these concepts via properties such as
instance of (wdt:P31), location (wdt:P276), creator (wdt:P170), and depicts (wdt:P180). We
excluded triples that were not specific to these selected entities. The selection was based on
a combination of semantic relevance, and common relations found in the cultural heritage
domain, to capture different types of relationships. The following types of relationships
were considered: “person X was born in place Y”, “person X works in place Y”, “person X
wrote a book about place Y”, and “person X created a painting that depicts place Y”. This
resulted in the creation of a subset that contains 105,000 entities and 500,000 relationships.
The data were preprocessed using a series of steps to ensure its quality and consistency:

* Triple Filtering: Triples that were not directly or indirectly related to the selected entity
types were excluded. This ensured a cleaner and more relevant subset for evaluation.

* Normalization: We normalized all the entities and relationships by removing blank
nodes, and resolving duplicate entities. This helped in avoiding errors due to incon-
sistent identifiers and ensured consistent results.

* Missing Value Handling: Incomplete entities and triples that did not include all
required attributes (like entity ID and relation type) were removed.

The specific SPARQL queries used for data extraction are as follows (Box 1); noting
that no data splits were created, we used the whole dataset for this experiment:
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Box 1. A sampel of the SPARQL queries used for data extraction.
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endpoint. This allows us to easily query the data and extract specific information. In
Figure 6, we provide a sample SPARQL query and its corresponding RDF graph.

3.2. Implementation Details

The following section details our implementation of the system components:

* LLM: We used the Llama-2-7B model, specifically the version that was released
on 18 July 2023. The model was fine-tuned using a combined dataset consisting
of 70% domain-specific data from the WCH-LOD dataset, and 30% synthetic data
generated using our mathematical model by creating varied combinations of entities
and relationships. The fine-tuning process used 10 training epochs with a batch size of
16 and a learning rate of 2 × 10−5, and a learning rate decay of 0.01. We used AdamW
as the optimizer, which provides a good balance between quality and computational
efficiency. This model was chosen due to the balance between its performance and its
open-source availability.

* Embedding Model: We used the all-mpnet-base-v2 model from the Sentence Trans-
formers library (version 2.2.2). This model was selected due to its proven ability to
capture semantic similarity within textual data, which is critical for accurately mea-
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suring the relevance of user context and the relationship. The Sentence Transformers
library provides an easy method to generate embeddings, and this model is known to
be suitable for many different types of text.

* Graph Database: Neo4j v4.4.14 was used as our graph database, chosen for its scala-
bility, expressiveness, and powerful Cypher query language. We loaded the extracted
RDF data into Neo4j by transforming the RDF triples into Neo4j nodes and relation-
ships. We created indexes on the entity IDs for faster lookup. We used the cypher
query language to implement our queries, which is a very powerful query language
for graph databases.

* SPARQL Engine: The Apache Jena Fuseki SPARQL server (version 4.10.0) was used
as our SPARQL engine. This was chosen due to its stability, its open-source nature,
and the ease of creating and executing SPARQL queries using this engine.

* Faceted Search: We implemented a custom faceted search interface using Python
Flask (version 2.3.3) and JavaScript. This implementation allows users to interactively
explore the results and modify the alpha parameter using a slider, which dynamically
adjusts the interestingness score to explore different perspectives on the data. The
faceted search also shows summaries of the results, allowing the user to perform
a more exploratory search.
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3.3. Experimental Procedures

To evaluate the effectiveness of the system, we conducted two types of experiments,
i.e., baseline comparisons and quantitative evaluation, since the focus of our paper is not
on qualitative evaluations.

1. Baseline Comparisons: Our system was compared to two baseline methods:

* Graph Traversal Baseline: We implemented a standard Breadth-First Search (BFS)
algorithm using Neo4j’s graph database library and the shortest path method,
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which provides the shortest path between two entities based on the number of
edges. We used the default implementation of Dijkstra’s algorithm provided by
the Neo4j library to calculate the shortest path. For the BFS, the explanation was
generated by a simple textual description of the traversed path, which does not
include any domain knowledge, and does not take user context into account.

* Knowledge-Based Baseline: We created a knowledge-based baseline by manually
constructing 50 SPARQL queries, and 50 simple text-based templates for generat-
ing explanations. The SPARQL queries were created based on the most frequent
types of relationships found in the dataset. The templates were created using
a simple keyword-based approach, and did not include a mathematical model
for guiding the search. Examples of the manual SPARQL queries used for the
knowledge-based baseline are as follows (Box 2):

Box 2. A sampel of the manual SPARQL queries used for the knowledge-based baseline.
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2. Quantitative Evaluation: To assess the quality and performance of the system, we
computed the following metrics:

* Precision and Recall: We measured precision and recall against a manually created
gold standard dataset. The dataset consists of 200 manually created relationships
and their correct, human-generated explanations. Two domain experts with
cultural heritage knowledge were employed to validate each result and generate
the correct explanation. A result was considered correct if it either matched a
result from the gold standard dataset, or was independently validated by the two
experts. The inter-rater agreement between experts was 0.85, which indicates a
high level of consistency in the annotation process. Any discrepancies in results
or explanations were discussed and resolved in a meeting of the experts.

* Text Quality: Text quality was measured using BLEU (Bilingual Evaluation Un-
derstudy), ROUGE-L (Recall-Oriented Understudy for Gisting Evaluation), and
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METEOR (Metric for Evaluation of Translation with Explicit Ordering) scores.
These are widely used in NLP for evaluating the quality of generated text. BLEU
measures n-gram overlap between the generated text and reference texts, assessing
the similarity of n-grams. ROUGE-L computes the longest common subsequence,
capturing longer matching patterns. METEOR is an alignment-based metric that
includes synonyms and stems, aligning word forms and measuring the degree
of exact and near-matches between two texts. While these metrics are good for
measuring the similarity of two texts, they may not capture the broader coherence
or quality of the text.

* Interestingness Correlation: We used Spearman’s rank correlation to measure
the degree to which the scores produced by our mathematical model match a set
of randomly generated scores. This is a measure of the monotonic relationship
between the two variables. We generated the random ratings by assigning a
random score between 0 and 1 to each relationship, and this was used as a baseline
to assess the quality of our interestingness score. If the value is close to 1, it means
the proposed method is better than random, and that it is capturing a specific type
of relation between data.

* Diversity: The diversity of the generated explanations was manually analyzed
by two domain experts, who classified results based on the variety of topics, and
the novelty of the discovered relationships. Novel results were classified as those
results that were not commonly found using standard keyword searches or basic
graph traversal methods, which include interesting insights.

All experiments were performed using the full subset of the WCH-LOD dataset. We
ran five different experiments, varying the alpha parameter from 0 to 1, using increments
of 0.25. We used each result as one run of the experiment. The other parameters were
kept constant across the different experiments to be able to analyze the effect of the alpha
parameter. The final results were similar across multiple runs, which demonstrates the
consistency of the methods.

3.4. Quantitative Results

Table 1 summarizes the quantitative results, showing a clear performance improve-
ment of our method over the baselines when evaluated on the WCH-LOD dataset.

Table 1. Quantitative results obtained using the WCH-LOD dataset.

Metric Graph Baseline Knowledge Baseline Our Approach (LLM)

Precision (P) 0.28 0.45 0.70

Recall (R) 0.25 0.42 0.68

F1-score 0.26 0.43 0.69

BLEU Score 0.18 0.30 0.52

Table 1. Cont.

Metric Graph Baseline Knowledge Baseline Our Approach (LLM)

ROUGE-L Score 0.24 0.32 0.58

METEOR Score 0.28 0.40 0.63

Interestingness
Correlation N/A N/A 0.65
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* Precision, Recall, and F1-Score: The LLM-enhanced approach achieved a precision of
0.70, a recall of 0.68, and an F1-score of 0.69. These results significantly outperform
both the graph traversal baseline (precision: 0.28, recall: 0.25, F1-score: 0.26) and
the knowledge-based baseline (precision: 0.45, recall: 0.42, F1-score: 0.43). The
quantitative results clearly demonstrate the efficacy of our approach in discovering
relevant relationships while minimizing the discovery of irrelevant relationships. The
results show a considerable gain compared to the other methods. The graph traversal
performed particularly poorly, because it did not include any domain knowledge, and
generated paths that were not very meaningful. The knowledge-based method did
much better by relying on human-engineered SPARQL queries, but the LLM-enhanced
approach improved over the baseline by using both the LLM and the interestingness
metric, leading to better results.

* Text Quality Metrics: The text generated by our method was evaluated using BLEU,
ROUGE-L, and METEOR. Our method scores the best values in all the metrics with
BLEU = 0.52, ROUGE-L = 0.58, and METEOR = 0.63. These results indicate that the
LLM is able to produce more human-like texts when compared to the baselines. The
knowledge-based baseline uses only simple templates, which results in poor text
quality. The graph baseline produces no natural language outputs, and relies on
a simple textual representation of the path.

* Interestingness Correlation: The Spearman correlation between the interestingness
scores produced by our method, and the random ratings was 0.65; this demonstrates
that our mathematical model is significantly more correlated with relevance compared
to random values and is, therefore, a useful tool to guide the search. Both the graph-
based and the knowledge-based baselines have no correlation score, which means
that the results are not very correlated with a relevant and meaningful score of
interestingness. The interestingness correlation is an important guide for our method,
and these results highlight its importance.

* The experiments clearly demonstrate the advantage of using our proposed neuro-
symbolic method when compared to traditional techniques.

* Effectiveness of LLMs: By incorporating an LLM, we were able to generate more
relevant and human-interpretable explanations than the template-based baseline or
the graph traversal baseline, which shows the effectiveness of LLMs.

* Importance of Mathematical Model: The novel mathematical model, based on the
computation of both the semantic relatedness and contextual relevance, plays a key
role in discovering relevant and non-trivial relationships, as highlighted by the inter-
estingness correlation, which is significantly higher when compared to both baselines.
This shows the importance of using a mathematical model to guide the system.

Quantitative Results: The results clearly demonstrate the higher precision, recall,
F1-score, and text quality metrics when compared to the baselines, which shows that our
system is able to improve on the state of the art.

4. Conclusions
This paper has presented a novel neuro-symbolic framework for relational search

in cultural heritage knowledge graphs. By integrating LLMs for explanation generation
and a novel mathematical formulation for interestingness, our approach significantly
enhances traditional methods. Our methodology addresses the shortcomings of pure
graph-based methods, which lack semantic understanding, and also of knowledge-based
methods, which rely on predefined patterns and rules, offering a more dynamic and
adaptable system. The use of a formal mathematical model allows our method to be more
robust, personalized, and interpretable, when compared to the baselines. The results of
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our quantitative experiments demonstrate that this approach not only improves precision
and recall, but also increases the quality of the explanations, allows users to perform
more efficient relational exploration, and highlights the importance of the interestingness
measure. We believe this methodology sets a new standard for the next generation of
relational search systems in cultural heritage and other domains. As a future extension to
our current research work, we aim to develop more advanced techniques for automatically
refining the interestingness score function based on user interactions and feedback. In
addition, we plan to explore reinforcement learning to fine-tune the LLM for generating
more personalized explanations. Further work on the scalability of the framework to larger
and more complex knowledge graphs will also be considered.
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