
An analytical model of a cluster-based service system with

application to a cloud environment

Osama Salameh1 and Sabine Wittevrongel2*

1Faculty of Engineering, Arab American University, P.O. Box 240, Jenin, Palestine.
2Department of Telecommunications and Information Processing (TELIN), Ghent

University, Sint-Pietersnieuwstraat 41, B-9000, Gent, Belgium.

*Corresponding author(s). E-mail(s): sabine.wittevrongel@ugent.be;
Contributing authors: osama.salameh@aaup.edu;

Abstract

Cluster-based systems have been extensively used to provide parallel processing of jobs. A distinguish-

ing feature of such systems is that jobs consist of tasks that should run in parallel on different servers.

A job does not start execution unless the required number of idle servers is available. This paper

proposes a new continuous-time Markov chain that accurately models such cluster-based system with

finite buffer size. Extensive performance evaluation is conducted where the influence of several model

parameters on a number of performance measures is investigated. Performance measures include the

blocking probability of jobs, the average delay of jobs in the queue and the utilization of the servers in

the cluster. The application of the model to cloud centers with thousands of servers is shown possible

under a typical heterogeneous workload where jobs require either 10 or 100 servers each.

Keywords: Continuous-time Markov chain, cloud computing, cluster-based system, performance analysis

1 Introduction

Cluster-based systems are well known to provide
parallel processing of jobs [1]. While the concept
of cluster computing has been introduced many
years ago [2], the recent interest to study sys-
tems that operate clusters is due to the fact that
cluster computing is embedded in the heart of
popular cloud services [3, 4]. A basic aspect of such
cluster-based systems is that cluster jobs consist
of smaller units called tasks, which are executed
on different servers and at the same time, hence
considerably reducing the job execution time. A
tracker node is responsible for tracking the avail-
able system resources at all times including the
idle and busy servers.

Typically jobs arrive at a finite-capacity queue.
Jobs are processed first by a job tracker node
based on a First-In-First-Out (FIFO) service dis-
cipline. The tracker node is a master unit that
conducts resource provisioning and keeps track of
the cloud resources. Each cluster job consists of
a number of tasks (referred to as the job size) to
execute in parallel. These tasks are equal in length
for some implementations [5]. When the required
number of servers is available in accordance with
the size of the job at the job tracker, the job is
then mapped to the cluster servers, one task per
server. Finally, when the execution of a job at the
cluster servers finishes, all the servers occupied by
the job are released and the job exits the system.
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Cluster-based systems are difficult to analyze
analytically due to their complexity and closed-
form expressions of performance measures can
be obtained only when the number of servers is
very small as discussed in the next section. In
this paper, we therefore propose a new analyt-
ical model of a cluster-based system based on
a continuous-time Markov chain (CTMC) that
keeps track of all jobs in the system: the jobs
waiting in the queue, the job at the tracker node
and the jobs in execution at the cluster. This way
the model can capture the typical dynamics of
cluster-based systems.

In our model, we firstly assume that jobs arrive
according to a Poisson process with rate λ, as e.g.
in [6, 7]. We define the service time of a job at the
job tracker as the time required to map the job
tasks to the cluster servers. This time starts when
the number of servers required for a job is avail-
able. When this number of servers is not available
yet, the job remains blocked at the tracker node.
So, we consider that the job currently at the job
tracker is mapped into the cluster only when a suf-
ficient number of servers is available. We assume
that the service rate of a job at the job tracker
node does not depend on the size (i.e., the number
of tasks or required number of parallel servers) of
the job. To accommodate for heterogeneous work-
loads, however, we allow the service rate of a job
at the cluster servers to depend on the job size.
We assume that all cluster servers are the same
and that all servers involved in the execution of a
job are released again at the same time, as e.g. in
[8]. So, essentially we assume that both the service
time of a job at the job tracker and the service time
of a job of size n at the cluster are exponentially
distributed with mean values 1/µ1 and 1/µ2,n

respectively, similar to [6, 9]. As a justification for
these assumptions, we first note that even under
Poisson arrivals and exponential service times the
performance of cluster-based systems with more
than two servers is still an open problem (see
Section 2). Also, we note that although in reality
job arrivals may also be more bursty and service
times are not necessarily always exponential, such
assumptions of Poisson arrivals and exponential
service have been extensively used in the litera-
ture for reasons of mathematical tractability, while
they can provide an adequate first approximation
of real systems, see e.g. [9] and the references
therein.

The main contributions of this paper are sum-
marized as follows.

• A novel CTMC model is developed that cap-
tures the dynamics of cluster-based systems.

• The performance analysis of cluster-based sys-
tems is possible for both homogeneous and
heterogeneous workloads.

• The impact of several parameters including the
job size distribution on the performance mea-
sures of a cluster-based system is studied. The
model allows to easily integrate any job size
distribution.

• Through the model engineers can quickly gain
insight into the expected performance when
designing or managing a cloud service cen-
ter and building service level agreements with
customers.

The rest of the paper is organized as follows.
In Section 2, we review some of the related work.
The CTMC model of the system under study is
presented in detail in Section 3. In Section 4,
the performance measures are defined and in
Section 5, an extensive analysis is conducted with
numerical results. In Section 6, we conclude.

2 Related work

In this section, we review work with related ana-
lytical models. Few publications [8, 10–13] con-
sider a job as consisting of tasks to be executed
at the same time in parallel on different servers.
The papers [8, 10, 11] consider a cluster system
with two servers that may work either indepen-
dently or in parallel. The service time is assumed
to have an exponential distribution in [8, 10] and
a general distribution in [11]. In [10, 11] Poisson
arrivals are considered, the queue is unbounded
and closed-form expressions for various perfor-
mance measures of interest are obtained. In [8],
the cluster system is modelled as an MAP/M/2
system with a Markovian arrival process and a
steady-state analysis is conducted. Stability condi-
tions are obtained in [12] for a multiserver system
where a job requires a random number of servers
to start execution. The paper [13] considers a
cluster-based system where the authors develop a
general mathematical model to analyze the cluster
performance. In this paper, it is considered that
the cluster is decomposed into disjoint partitions
that execute the same collection of applications

2



and the performance of a partition is reduced to
the investigation of the performance of a single
node. All the above models either consider a small
number of servers in a cluster or decompose a clus-
ter into disjoint partitions where each partition
is analyzed separately. All these models cannot
be applied to clusters with a larger number of
servers including cloud computing centers where
no cluster partitioning is performed.

The past decade a large number of publications
have investigated the performance of the cloud
[14–21]. In [14], the authors propose a classical
M/G/m/K queueing model to analyze the per-
formance of a cloud server farm. The performance
measures include the blocking probability and the
mean number of tasks in the system. In [15], the
server farm is represented by an M/M/m system
with infinite queue and the probability density
function of the waiting time is derived. In [16], an
M/M/m+D queueing system is proposed to rep-
resent the servers in the cloud. In this system, the
jobs are impatient and when a maximum tolera-
ble waiting time D is reached, a job is assigned
to a temporary rented server. In this paper, the
authors study the profit maximization problem. In
[17], the author conducts a performance analysis
using stochastic reward nets. Several performance
measures are evaluated including the utilization
and waiting time. In this work, three variations
of the arrival process are considered: a Poisson, a
Markov-modulated Poisson (MMPP) and a bursty
arrival process. Open Jackson networks are used
to model the cloud in [18]. The model consists of
a combination of M/M/1 and M/M/m queues in
sequence. The main performance measure is the
total response time. In [19], the cloud is mod-
eled as a finite queue with a load balancing node
and m individual servers. The service times on
the node and servers are exponentially distributed
and arrivals are considered to be according to
a Poisson process. In [20], the cloud is repre-
sented as an G/G/m-like model with finite queue.
The authors present an efficient approximate solu-
tion to this system. The performance measures
include the response time and blocking probabil-
ity. In [21], an open queueing network is employed
to model this cloud where a balancing node is
modeled as an M/M/1/K queue and each server
(physical machine) is represented as an M/M/m
queue, where m is the number of virtual machines

running on top of the physical machines. A dis-
advantage of all the above papers is that they
assume that a job runs on exactly one server, i.e.,
no parallel execution of job tasks is considered.

Parallel processing of a job is considered in
[6, 9]. These papers aim to compute the mini-
mum number of resources needed to satisfy SLA
(service-level-agreement) requirements. A classi-
cal M/G/1/K system is proposed to model the
cloud cluster and parallel processing is considered
by simply dividing the job execution time of a
cluster job (as if it is executed by one server)
by the number of parallel servers. In [7], a Dead-
line Aware Scheduling Scheme is proposed and
analyzed through a discrete-time Markov chain
model. This model also considers a job to consist
of tasks to be executed in parallel. However, the
number of idle and busy servers is not captured
and the authors assume that when a job arrives at
the head of the line, it will be served with proba-
bility p that is considered beyond the scope of the
paper. In reality, the job will be served if the num-
ber of required servers is available and will have
to wait otherwise.

Recently, a multiserver queue where a job can
simultaneously occupy multiple servers is tackled
in [22–25]. The transient analysis of a two-server
job queue is conducted in [22]. This paper stud-
ies a system with two identical servers, infinite
buffer capacity and FIFO scheduling discipline,
where the stability detection problem is solved.
In [23], the authors propose a three-level model-
ing approach to study a multiserver job system
as a representation of today’s data centers. An
explicit form of stability condition is obtained
using matrix analytic methods for the case when
the number of servers is two. In [24, 25], the
multiserver job queuing model is defined, where
multiserver jobs arrive with rate λ, the servers are
homogeneous and the service discipline is FIFO. It
has been indicated that almost nothing is known
about the performance of such system in [24],
even assuming Poisson arrivals and exponential
job durations. The analysis of the model with
more than two servers is declared as an open prob-
lem in [25], even when all jobs have the same
exponentially distributed service durations. This
paper aims exactly to address this open problem.
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3 CTMC model of the system
under study

We consider a cluster-based service system as illus-
trated in Figure 1. The system consists of a queue,
a job tracker node and a cluster of N servers. We
assume that jobs arrive to the system according to
a Poisson process with arrival rate λ. Jobs arrive
one at a time into the queue if the job tracker node
is occupied or directly to the job tracker if both
the queue and the job tracker node are empty. The
queue has a finite storage capacity C and an arriv-
ing job is blocked and lost if the queue is full upon
arrival.

Jobs are first processed by the job tracker node
in FIFO order. A job consists of tasks for par-
allel execution on different servers of the cluster,
one task per server. We define the job size as an
integer-valued random variable that indicates the
number of tasks of the job. The job size then
also corresponds to the number of available servers
that are required for the job to start execution
on the cluster. We assume that the job sizes of
the jobs entering the job tracker are independent
and identically distributed (i.i.d.) with common
probability mass function

Prob[job size = n] = pn , for 1 ≤ n ≤ T , (1)

where T denotes the maximum job size, with
T ≤ N . We do not specify specific values for these
probabilities pn for now. Specific example job
size distributions will be considered when deriv-
ing numerical results later in the paper, as listed
in Section 5.1.

When the required number of servers for a job
is available, the job tracker then maps the job
currently at the tracker into the cluster. This job
mapping is assumed to require an exponentially
distributed service time with mean value 1/µ1,
where µ1 will be referred to as the service rate
of a job at the job tracker. Also, we assume that
the service time of a job of size n at the cluster is
exponentially distributed with mean value 1/µ2,n,
i.e., µ2,n is the service rate of a job of size n at the
service cluster. Jobs leave the cluster one by one
and as a result the servers occupied by the exiting
job are released and become available again. The
parameters of the system model are summarized
in Table 1.

λ

µ1

µ2,n

1

2

N

1C . . .

queue job

tracker

server cluster

Fig. 1 Queueing model of the studied cluster-based sys-
tem

Table 1 Model parameters

λ Job arrival rate
µ1 Service rate of a job at the job tracker
µ2,n Service rate of a job of size n at the cluster
N Number of servers in the cluster
C Maximum capacity of the queue
T Maximum job size

To investigate the behavior of the considered
system, we now create a CTMC model. To this
end, we let system state x correspond to the set
x = (x1, x2, V ), where x1 is the number of jobs
waiting in the queue, x2 corresponds to the state
of the job tracker node and V is a vector that
represents the state of the server cluster. More
specifically, x2 is the size of the job in service at
the job tracker node, if any, where the job size cor-
responds to the number of servers needed for this
job to start execution at the cluster. When there
is no job at the job tracker node, we define x2 = 0.
The vector V is an ordered vector that describes
all the jobs currently in execution at the cluster
through the number of servers each of these jobs
occupies in increasing order of the job sizes. When
there are no jobs at the cluster, we define V = (0).
Clearly, this means that V is a variable-length vec-
tor and its length, denoted by ℓV , indicates the
total number of jobs at the cluster if V 6= (0). For
example, V = (2, 2, 3) means that ℓV = 3 jobs
are currently getting service at the cluster, two
jobs occupy 2 servers each and one job occupies
3 servers. In general, the length ℓV of the vector
V is thus between 1 and N such that the sum of
all elements Vi, 1 ≤ i ≤ ℓV of the vector V equals
the total number of occupied servers in the clus-
ter and thus is less than or equal to N . For later

4



use, for V 6= (0), we also define m(n, V ) as the so-
called multiplicity of n in the vector V , i.e., the
number of times the job size n occurs in the vector
V , which also indicates the number of jobs of size
n that are currently being served at the cluster.

The next step in our analysis is now to deter-
mine the transition rates qx,y of the CTMC from
a system state x to another state y (x 6= y). To do
so, for each system state x = (x1, x2, V ) we con-
sider all possible events that cause a transition out
of state x to another state y (x 6= y) and deter-
mine the corresponding rates. It turns out that we
need to distinguish 5 different transition cases, as
follows.

• First, if in the current system state x =
(x1, x2, V ) both the queue and the job tracker
node are empty (i.e., if x1 = x2 = 0), an arriv-
ing job to the system will directly enter the job
tracker node and according to the job size dis-
tribution (see Equation (1)) the size of this job
equals n with probability pn, 1 ≤ n ≤ T . Conse-
quently, with rate λ pn we get a transition from
state x = (0, 0, V ) to state y = (0, n, V ) and
therefore

qx,y = λ pn , if y = (0, n, V ), x1 = x2 = 0 .

The total number of possible state transitions
from a given state x = (0, 0, V ) due to a job
arrival clearly equals the number of possible job
sizes T in this case.

• Secondly, if a job arrives to the system (with
rate λ) and in the current system state the job
tracker is not idle and the queue is not com-
pletely full (i.e., if x2 > 0 and x1 < C), the
arriving job joins the queue. The corresponding
transition equation is then

qx,y = λ ,

if y = (x1 + 1, x2, V ), x1 < C, x2 > 0 .

Note that in case x2 > 0 and x1 = C, an
arriving job is blocked and the system state sim-
ply remains unchanged, so we do not need to
consider this case.

• Next, if in the current system state x =
(x1, x2, V ) we have that V 6= (0) and m(n, V ) >
0, a job of size n finishes execution at the clus-
ter with rate m(n, V )µ2,n. Since n servers in
the cluster are released upon the departure of

the job of size n, we then get a transition to
state y = (x1, x2, V − {n}). For example, for
given values of x1 and x2, if V = (2, 2, 3),
then a transition is possible to state (x1, x2, V −
{2}) = (x1, x2, (2, 3)) with rate 2µ2,2 or to state
(x1, x2, V −{3}) = (x1, x2, (2, 2)) with rate µ2,3

respectively. In summary, we thus have

qx,y = m(n, V )µ2,n ,

if y = (x1, x2, V − {n}), V 6= (0),

m(n, V ) > 0 .

The total number of possible transitions from a
given state x = (x1, x2, V ) with V 6= (0) due
to the end of a job execution clearly equals the
number of different job sizes currently in service
at the cluster, i.e., the number of different job
sizes n (1 ≤ n ≤ T ) for which m(n, V ) > 0.

• The fourth transition case corresponds to tran-
sitions when the job tracker is not idle (i.e.,
x2 > 0) and the job currently in the job tracker,
which is then of size x2 (1 ≤ x2 ≤ T ), finishes
service at the job tracker node and moves to the
cluster, while the queue is currently nonempty
(i.e., while x1 > 0). Such transitions are only
possible if there are at least x2 servers available
at the cluster, i.e., if in the current system state
x = (x1, x2, V ) we have that

∑ℓV
i=1 Vi+x2 ≤ N .

In this case, since the queue is nonempty, a
new job enters the job tracker node. Like for
the first transition case, this new entering job
at the job tracker is of size n with probability
pn. All these observations lead to the following
transition equation:

qx,y = µ1 pn ,

if y = (x1 − 1, n, V + {x2}), x1 > 0,

x2 > 0,

ℓV
∑

i=1

Vi + x2 ≤ N .

Again, the total number of possible state transi-
tions from state x equals the number of possible
job sizes T in this case.

• Finally, if in the current system state we have
an empty queue and the job tracker is not idle
(i.e., x1 = 0, x2 > 0) and the job of size x2

(1 ≤ x2 ≤ T ) in the tracker moves to the cluster,
we get a transition to state y = (0, 0, V +{x2}).
This transition occurs with rate µ1. Like for the
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previous case, this transition is only possible if
at least x2 servers are available at the cluster,
and therefore

qx,y = µ1 ,

if y = (0, 0, V + {x2}), x1 = 0,

x2 > 0,

ℓV
∑

i=1

Vi + x2 ≤ N .

These transition rates between states are sum-
marized in Table 2. For all other combinations of
system states x and y, with x 6= y, the transition
rate qx,y from state x to state y equals 0.

The infinitesimal generator or transition rate
matrix Q of the CTMC is then completely deter-
mined based on the property that the diagonal
elements qx,x of the (square) matrix Q are such
that the row sums of Q are equal to zero, while
the non-diagonal elements qx,y (x 6= y) of Q equal
the above-derived transition rates.

Table 2 Transition rates qx,y from state
x = (x1, x2, V ) to state y

State y Transition Condition

rate

(0, n, V ) λ pn x1 = x2 = 0

(x1 + 1, x2, V ) λ x1 < C, x2 > 0

(x1, x2, V − {n}) m(n, V )µ2,n V 6= (0),
m(n, V ) > 0

(x1 − 1, n, V + {x2}) µ1 pn x1 > 0, x2 > 0,
∑ℓV

i=1
Vi

+ x2 ≤ N

(0, 0, V + {x2}) µ1 x1 = 0, x2 > 0,
∑ℓV

i=1
Vi

+ x2 ≤ N

Next, we show that the infinitesimal generator
Q of the CTMC has a Quasi Birth Death (QBD)
structure. Within a QBD matrix, the states are
arranged into QBD levels and QBD phases result-
ing in a block-tridiagonal matrix (see Equation (2)
below). A distinguishing feature of this structure
is that a transition from a state x to a state y can
happen only between adjacent levels or within the
same level. We define the level of our QBD as the
number of jobs x1 (0 ≤ x1 ≤ C) currently waiting

in the queue and we define the phase as a vec-
tor (x2, V ) representing the current state of the
job tracker x2 (0 ≤ x2 ≤ T ) and the state of the
cluster described by vector V . In view of the tran-
sition rates of Table 2, it can be easily seen that
the infinitesimal generator Q has indeed a QBD
block structure, where the transition cases one,
three and five describe transitions within the same
level and the transition cases two and four describe
transitions that increase or decrease the level by
one respectively. More specifically, the structure
of the matrix Q is as follows:

Q =





















A10 A00

A21 A11 A01

A22 A11 A01

A22 A11 A01

· · ·
A22 A11 A01

A22 A1C





















, (2)

where Aij denotes a submatrix of level j. Level 0
represents the case when the queue is empty. In
level 1, there is only one job at the queue, etc.
Submatrix A0j contains transitions that result in
an increase of the level by one, i.e., a forward sub-
matrix. Likewise, A1j and A2j are the submatrices
that describe the transitions within the same level
and transitions that result in a decrease of the
level by one, i.e., a backward submatrix, respec-
tively. Note that the size of submatrix A10 is larger
than the size of A11 since it includes additional
states for level 0, namely the states related to the
case when the job tracker node is empty, i.e., when
the job tracker state has value 0. Starting from
level 1, the job tracker cannot be empty because
when a job finishes service in the job tracker node,
the head of the line job occupies instantly the
job tracker decreasing the level by one. It is also
important to note that starting from level 2 until
level C−1 all the submatrices A0j , A1j or A2j are
identical, respectively. This is because the queue
length does not influence the transitions within
these submatrices.

We now describe the order of the possible
phases (x2, V ) within a given level of matrix Q.
Firstly, the possible phases are ordered in increas-
ing order of the size x2 of the job at the job
tracker node. For a given value of x2, the possible
states of the vector V are then arranged first in
increasing order of the length ℓV and for a given
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length ℓV = k ≥ 1 in lexicographical order, as
follows: (1, 1, . . . , 1), (1, 1, . . . , 2), . . ., (1, 1, . . . , r),
(1, 1, . . . , 2, 2), (1, 1, . . . , 2, 3), . . ., (1, 1, . . . , 2, r),
(1, 1, . . . , 3, 3), etc., where the notation r in this
series stands for

r = min(N −

k−1
∑

i=1

Vi, T ) . (3)

For example, if ℓV = 3 and N = T = 6, the pos-
sible states of V are ordered as (1, 1, 1), (1, 1, 2),
(1, 1, 3), (1, 1, 4), (1, 2, 2), (1, 2, 3), (2, 2, 2). The
order of the states just described assumes that x2

can have any value between 1 and T . However,
the same logic for the order of the states within
the phase applies when x2 has specific ascending
values j1, j2, j3, etc.

Let S denote the set of all possible states
x = (x1, x2, V ) of the CTMC. We define Px as the
steady-state probability that the system is in state
x ∈ S. We then include the probabilities Px for all
x ∈ S in a row vector P , where the states x are
also ordered in increasing order of the level x1, for
a given value of x1 in increasing order of x2 and
then for a given value of x2 as explained above.
This vector P of steady-state probabilities of the
CTMC can then be computed by solving the set
of balance equations of the CTMC together with
the normalization condition:

P Q = 0 ,
∑

x∈S
Px = 1 . (4)

The QBD structure of the CTMC allows us to effi-
ciently compute the steady-state probabilities Px.
Several numerical approaches are available in the
literature, see e.g. [26, 27]. Specifically, to solve
the equation P Q = 0, we use here the Gaus-
sian elimination technique and the concepts of
level by level Schur complementation and censored
Markov chains applied to a block-structured QBD.
For an illustration of the main steps of the com-
putation technique, we refer the reader e.g. to [28]
(Section 4.1). Based on the vector P , we derive
several performance measures in the next section.

4 Performance measures

We are interested in computing performance mea-
sures such as the average delay E[D] of the jobs
in the queue, the average utilization E[U ] of the

cluster servers, the blocking probability B due to
a full queue and the mean number of jobs E[J ]
currently being served at the cluster.

Let Sj be the set of all states of the CTMC
at level j, then the average queue length E[q] is
computed as

E[q] =

C
∑

j=1

j
∑

x∈Sj

Px , (5)

where C is the maximum queue capacity. The
blocking probability B is the probability that an
arriving job finds the queue full and gets lost. This
is obtained by the formula

B =
∑

x∈SC

Px , (6)

where SC is the set of all states at level C. Then
the average delay experienced by jobs in the queue
can be computed as

E[D] =
E[q]

λ (1 −B)
. (7)

Let SV(x) be the sum of all elements Vi in vector
V of state x. The average utilization E[U ] of the
cluster servers is then computed as

E[U ] =
∑

x∈S
SV(x) Px , (8)

where as before S is the set of all system states.
Finally, let NV(x) be the number of non-zero ele-
ments of the vector V of state x. The average
number of jobs served in parallel at the server
cluster is calculated as

E[J ] =
∑

x∈S
NV(x) Px . (9)

5 Numerical results

In this section, we investigate the performance of
cluster-based service systems through a number of
illustrative numerical examples.

5.1 Overview of the considered

scenarios

We mostly, except for Figure 11, consider scenar-
ios where the cluster has a number of servers N of
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16 or less. The results then seem to be applicable
for small clusters and micro-clouds that typically
contain only a few servers, e.g. 10 servers [29].
Figure 11 considers a larger cluster size N above
1000.

For the service times of jobs at the cluster,
we consider the service rate to be the same for
all job sizes, i.e., µ2,n = µ2 for all 1 ≤ n ≤ T ,
in Figures 2–10, while a heterogeneous workload
with service rates dependent on the job size is
considered in Figure 11.

With respect to the job sizes, we assume that
the size of a job can take any integer value between
1 and N in Figures 2–4 and Figures 7–10, i.e., we
set T = N in these figures, and we consider the
case of values T smaller than N in Figures 5–6.

Our model allows arbitrary values for the
probabilities pn defined in Equation (1). In the
examples, several specific distributions are now
considered for the job size.

• Uniform. The probability of having a job size
n is given by pn = 1/T , for any integer n with
1 ≤ n ≤ T .

• (Bounded) normal. The probability pn is pro-

portional to 1
σ
√
2π

exp
(

− (n−η)2

2σ2

)

, for all inte-

gers n in the range 1 ≤ n ≤ T , with η =
(T +1)/2, where the proportionality constant is
determined such that the resulting probability
mass function is normalized, i.e.,

∑T

n=1 pn = 1.
• Harmonic. The probability pn is proportional to
1/n1.5, for integer job sizes n with 1 ≤ n ≤ T .
This distribution gives a higher probability for
jobs that require a smaller number of servers.
All the distributions mentioned above were used
to describe job sizes for parallel computing [30–
32].

• Probability distribution derived from real cloud
traces. While in a real cloud a job can have
any number of tasks between 1 and tens of
thousands, it has been found that some job
sizes are encountered more often and comprise a
major portion of the workload. Taking this fact
into consideration, we assume in this case that
x2 has few possible values j1, j2, j3, . . . with
probabilities pj1 , pj2 , pj3 , . . . respectively. For
example, it has been reported [5] that most jobs
have a small number of tasks and these jobs are
short, while there exist few long jobs with many
tasks. The job length and job size are observed
to have a bi-modal distribution [5, 33, 34].

E[D] (s)
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1.2

1.6

2.0

2.4

µ1 (s
−1)

λ = 10/s

λ = 30/s

Fig. 2 Average delay of jobs E[D] versus µ1, for µ2 =
10/s, N = T = 16, C = 15, uniform job sizes and different
values of λ
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Fig. 3 Utilization of the cluster servers E[U ] (normalized
by N) versus N , for µ1 = 1000/s, µ2 = 10/s, C = 15,
T = N , uniform job sizes and different values of λ

We start in the Figures 2–6 with investigating
the impact of different parameters on the perfor-
mance measures in case the job size is uniformly
distributed. Next, in the Figures 7–9, we also
explore the effect of other distributions of the job
size, namely the (bounded) normal and harmonic
distributions. As a special case, in Figure 10, we
study the influence of the variance of the job size
distribution when the job size distribution is nor-
mal. Finally, in Figure 11, we apply the model to
the case when the probability distribution of the
job size is derived from real traces.

5.2 Discussion of the results

First, we explore the impact of the service rate
µ1 on the average delay of jobs in the queue. In
Figure 2, we show the average delay of the jobs
E[D] versus µ1 for different values of the arrival
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Fig. 4 Average delay of jobs E[D] versus N , for µ1 =
1000/s, µ2 = 10/s, C = 15, T = N , uniform job sizes and
different values of λ
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Fig. 5 Utilization of the cluster servers E[U ] (normalized
by N) versus λ, for µ1 = 100/s, µ2 = 10/s, N = 16,
C = 15, uniform job sizes and different values of T
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Fig. 6 Average delay of jobs E[D] versus λ, for µ1 =
100/s, µ2 = 10/s, N = 16, C = 15, uniform job sizes and
different values of T
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Fig. 7 Blocking probability of jobs B versus λ, for µ1 =
100/s, µ2 = 10/s, N = T = 16, C = 15 and different job
size distributions
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Fig. 8 Average delay of jobs E[D] versus λ, for µ1 =
100/s, µ2 = 10/s, N = T = 16, C = 15 and different job
size distributions
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Fig. 9 Utilization of the cluster servers E[U ] versus λ, for
µ1 = 100/s, µ2 = 10/s, N = T = 16, C = 15 and different
job size distributions
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Fig. 10 Average delay of jobs E[D] versus σ, for λ = 30/s,
µ1 = 200/s, µ2 = 10/s, N = T = 15, C = 15 and normal
job sizes
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Fig. 11 Utilization of the cluster servers E[U ] versus λ,
for λ = 30/s, µ1 = 100/s, bi-modal job sizes with j1 = 10
and j2 = 100, µ2,j1 = 10/s, µ2,j2 = 1/s, N = 1500, C = 50
and different job size distributions

rate λ and a uniform job size distribution. It can
be clearly seen that for increasing µ1 the aver-
age delay of the jobs decreases, as expected. This
decrease is sharp for smaller values of µ1 and a
further increase of µ1 has a small effect on the
average delay. Similarly, it has been observed that
increasing µ1 beyond a certain value for a specific
parameter set has a small effect on the rest of the
studied performance measures as well. Based on
the working parameters of the system, it is clear
that a specific value of µ1 is needed (and thus
enough resources are required) to prevent the job
tracker node of becoming the bottleneck of the
system.

Next, we investigate the effect of the cluster
size N on the average delay of jobs and on the
cluster utilization. We choose µ1 much larger than
µ2 to minimize the effect of the job tracker on

the performance of the cluster. In Figure 3, the
utilization of the cluster (normalized byN) is plot-
ted versus the cluster size N for uniform job sizes
with T = N and different values of λ. We observe
that an increase of the cluster size negatively influ-
ences the cluster utilization and more resources
are wasted. The reason is that when a job demands
a larger number of servers than currently avail-
able, the job temporarily prevents the smaller ones
behind it to receive service because the service
discipline is FIFO. Also, it should be noted that
when N = 1, the model becomes very close to
an M/M/1/C queueing model. In Figure 4, the
average delay of the jobs is presented versus the
cluster size for different values of λ. We notice here
that for increasing N , the average delay decreases.
This decrease is due to the increase of the number
of jobs that are served in parallel. In Figures 3–
4, an increase of the arrival rate λ leads to an
increase of both the utilization and the average job
delay, as expected. However, it should be noted
that it seems that for a specific parameter set,
an increase of the cluster size beyond a certain
value does almost not affect the cluster utilization
nor the average delay of jobs. Another interest-
ing fact is that the maximum value of the average
number of jobs served in parallel over all scenar-
ios of Figures 3–4 does not exceed 1.34, which is
somewhat counter intuitive when the cluster size
N = 16.

Now, we study the case when the maximum
job size T < N , i.e., when the cluster size is larger
than the requirement of the largest job. The job
size distribution is still uniform. In Figure 5, the
utilization of the cluster E[U ] (normalized by N)
is shown versus λ for different values of the maxi-
mum job size T . We observe that for smaller values
of λ, the utilization is larger for a larger maxi-
mum job size T . For larger values of λ, however,
an increase of the maximum job size will decrease
the utilization because the number of jobs that can
run in parallel decreases. In particular, when the
maximum job size is only 8, we have that in this
case at least 2 jobs of maximum size can always
still be executed in parallel, which is not the case
for T > 8. In Figure 6, the average delay of jobs
E[D] is plotted versus λ for different values of the
maximum job size T . Clearly, when T increases,
more servers may be involved in the execution of
a job, so fewer jobs can be processed in parallel,
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which results in an increase of the number of jobs
in the queue and the delay of jobs in the queue.

In a next set of examples, we study the effect of
various job size distributions on the performance
measures under the condition that the maximum
job size T = N . For the (bounded) normal job
sizes, we have chosen σ = η/4. In Figure 7, the
blocking probability B is shown versus λ for dif-
ferent job size distributions. When the arrival rate
λ is small, the queue is lightly occupied and the
blocking probability is small, as expected. As λ
increases, the blocking probability rises and the
effect of the job size distribution on the block-
ing probability can be clearly noticed. It can be
seen that for given T , when the job size has a
harmonic distribution, the blocking probability is
much lower than for the rest of the investigated
distributions. This is explained by the fact that
in case of harmonic job sizes more smaller jobs
arrive than larger ones, so for given T , the aver-
age job size is smaller and more jobs can be served
in parallel. We also notice that for given T , the
system has a similar behavior for uniform and
normal job sizes, where the uniform distribution
slightly outperforms the case of (bounded) normal
job sizes.

Figure 8 shows the average delay of jobs E[D]
versus λ, again for different job size distribu-
tions. As expected, for given T , also the average
delay is much lower for the case of harmonic job
sizes. Furthermore, we notice that for larger λ, the
average delay for both normal and uniform job
sizes increases more slowly as the queue is getting
almost full.

In Figure 9, the utilization of the cluster
servers is presented versus λ. For smaller λ, the
utilization increases almost linearly with increas-
ing λ. A further increase of λ beyond a certain
point has almost no effect on the utilization. In
summary, Figures 7–9 show that for a given maxi-
mum job size T , the cluster-based system behaves
the best for the harmonic job size distribution. In
this case, both the blocking probability and the
average delay of jobs are the lowest for the same
λ. The system performs similarly for both normal
and uniform job sizes and the uniform job sizes
are slightly better in terms of blocking probability
and average delay.

Figure 10 illustrates the effect of the standard
deviation of the job sizes on the average delay

of jobs in case of (bounded) normal job sizes. In
particular, Figure 10 shows the delay E[D] ver-
sus the parameter σ of the (bounded) normal job
size distribution. We see that the average delay of
jobs decreases for increasing values of σ. This is
explained by the fact that when the standard devi-
ation is small, most jobs are of similar size close to
the mean job size and the availability of a number
of idle servers smaller than the mean job size is
often not made use of. When the standard devia-
tion increases, the utilization of the cluster servers
increases, more jobs are served in parallel and the
delay decreases.

In a last example, we investigate the perfor-
mance of a cluster-based system with N = 1500
servers, when the workload is approximated by
two different job types as follows. Based on a real
workload measurement [5], it is indicated that the
majority of the jobs require either less than 10
servers or more than 100 servers each. Also, the
running time of jobs that require many servers is
significantly longer than the length of jobs with a
small number of servers. Based on the above, we
assume j1 = 10 and j2 = 100 as possible values
for the job size for the first and second job type
respectively. We also assume that many-server
jobs are 10 times longer than few-server jobs. In
particular, we assume µ2,j1 = 10/s and µ2,j2 = 1/s
as values for the service rate at the cluster for the
first and second job type respectively.

Under such common bi-modal workload, even
for N = 1500 servers, the total number of jobs in
service at the cluster is only 150 or less such that
the state space S of our CTMC and especially the
number of possible states of the vector V is not
that large and the performance characteristics can
be computed in a reasonable time.

Figure 11 shows the utilization of the servers
versus the arrival rate λ for a heterogeneous
workload with different bi-modal probability dis-
tributions of the job size. It can be seen that a
small increase in the percentage of long jobs sig-
nificantly increases the utilization of the servers.
This is interesting because in this case the block-
ing probability B and the mean queue length E[q]
are almost the same for a given arrival rate λ. Con-
sequently, the utilization of the servers increases
significantly without affecting the average delay of
jobs in the queue.
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6 Conclusion

In this paper, we have thoroughly analyzed the
impact of different parameters on the performance
measures of a cluster-based service system. We
have proposed a new analytical model based on
Markov chain theory that explicitly takes the par-
allel execution of job tasks into consideration and
as such captures the typical dynamics of a cluster-
based service system. The model can be used to
study clusters of different sizes. We have shown
that our model is flexible, efficient and can also
be applied to analyze clouds with thousands of
servers under a typical heterogeneous workload
with bi-modal job sizes (see Figure 11).

Through our analysis, key performance mea-
sures of a cluster-based service system such as the
job blocking probability, the average job delay in
the queue or the average utilization of the cluster
servers can be estimated. As has been demon-
strated by the given numerical examples, through
our model engineers can quickly gain insight into
the expected performance when designing or man-
aging a cloud service center and building service
level agreements with customers. Such quantita-
tive performance analysis of cloud service centers
is extremely important since institutions rely on
such systems more and more. Our model can
then be used e.g. to predict the number of clus-
ter servers needed to satisfy a given maximum
job delay, while e.g. keeping the server utilization
above a given threshold. This is particularly use-
ful in the design phase of server clusters. Using
the model, such performance-related issues can
be handled efficiently, avoiding the need to first
build up a complete server setup and then perform
time-consuming measurements on it.

A future research direction is the extension of
the model to other service disciplines than FIFO.
Server clusters often employ priority scheduling
disciplines, where higher priority jobs can evict
lower priority jobs to meet their service level
agreement [34]. We therefore intend to further
extend our model to the case of preemptive pri-
ority scheduling with 2 priority classes of jobs.
Such extension seems justified by the fact that the
job length and the job size are typically observed
to have a bi-modal distribution [34], where the
few long jobs can evict lower priority jobs if their
required number of idle servers is not available.
Another potential direction for future work is to

include the energy consumpton of the cluster in
the model [35], where for each server different
states could be considered: setup, running and
down.
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