Please use this identifier to cite or link to this item: http://repository.aaup.edu/jspui/handle/123456789/906
Title: Design and characterization of MoO3/CdSe heterojunctions
Authors: A. F Qasrawi
s.e.al garni
Issue Date: 2018
Publisher: Physica E: Low-dimensional Systems and Nanostructures
Abstract: In this work, the morphological, compositional, structural, optical and dielectric properties of CdSe which are deposited onto glass and onto MoO3 thin film substrates are investigated. The use of MoO3 as substrate for the growth of CdSe is observed to increase the lattice parameters of the hexagonal unit cell of CdSe and decreases the values of grain size and strain. It also forms band tails of width of 0.20?eV in the band gap of CdSe. The optical analysis has shown that the MoO3/CdSe interfacing results in blue shift in the energy band gap of CdSe and also result in large conduction and valence band of sets of values of 2.12 and 0.94?eV, respectively. The dielectric spectral analysis with the help of Drude-Lorentz approaches for optical conduction, revealed an enhancement in the drift mobility of charge carriers from 15.69 to 39.30?cm2/V as a response to the incident electromagnetic field. The free carrier density of the MoO3/CdSe being of the order of 1017?cm?3 with the large valence and conduction band offsets and the sufficiently large drift mobility nominates the MoO3/CdSe heterojunctions as an effective component of optoelectronic technology including thin film transistors.
URI: https://doi.org/10.1016/j.physe.2018.09.016
Appears in Collections:Faculty & Staff Scientific Research publications

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools