Please use this identifier to cite or link to this item:
http://repository.aaup.edu/jspui/handle/123456789/1299
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suwan, Iyad$AAUP$Palestinian | - |
dc.contributor.author | Oweis, Shahd$AAUP$Palestinian | - |
dc.contributor.author | Abusaa, Muayad$AAUP$Palestinian | - |
dc.contributor.author | Abdljawad, Thabet$Other$Other | - |
dc.date.accessioned | 2020-09-27T04:17:51Z | - |
dc.date.available | 2020-09-27T04:17:51Z | - |
dc.date.issued | 2020-05-01 | - |
dc.identifier.issn | https://doi.org/10.1155/2020/4867927 | - |
dc.identifier.uri | http://repository.aaup.edu/jspui/handle/123456789/1299 | - |
dc.description.abstract | In this work, the nabla discrete new Riemann-Liouville and Caputo fractional proportional differences of order $0<\varepsilon<1$ on the time scale $ \mathbb{Z} $ are formulated. The differences and summations of discrete fractional proportional are detected on $\mathbb{Z}$, and the fractional proportional sums associated to $ \left( ^{R} _{c} \nabla ^{\varepsilon , \rho} \chi \right)(z) $ with order $0<\varepsilon<1$ are defined. The relation between nabla Riemann-Liouville and Caputo fractional proportional differences is derived. The monotonicity results for the nabla Caputo fractional proportional difference are proved; specifically, if $( _{c-1} ^{R} \nabla ^{\varepsilon , \rho} \chi )(z) > 0 $ then $\chi(z)$ is $ \varepsilon \rho \ -$increasing, and if $\chi(z)$ is strictly increasing on $ \mathbb{N}_{c} $ and $\chi(c)>0$, then ($_{c-1} ^{R} \nabla ^{\varepsilon , \rho } \chi )(z) > 0$. As an application of our findings, a new version of fractional proportional difference of the Mean Value Theorem(MVT) on $\mathbb{Z}$ is proved. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Hindawi | en_US |
dc.relation.ispartofseries | 4867927; | - |
dc.subject | Riemann-Liouville(RL) fractional proportional di erence | en_US |
dc.subject | Caputo fractional proportional di erence | en_US |
dc.subject | fractional proportional Mean Value Theorem(MVT) | en_US |
dc.title | Monotonicity Analysis of Fractional Proportional Differences | en_US |
dc.type | Article | en_US |
Appears in Collections: | Faculty & Staff Scientific Research publications |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Iyad Suwan Hindawi.pdf | 777.82 kB | Adobe PDF | ![]() View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Admin Tools