Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authoraseel kmail-
dc.contributor.authormohammed maree-
dc.contributor.authormohammed belkhatir, $Other$Other-
dc.description.abstractThe growth of online recruitment has spurred the need for more effective automated systems. On the one hand, traditional approaches based on keyword-based matching techniques suffer from low precision, i.e. a large fraction of the systems' suggestions are irrelevant. On the other hand, the newer semantics-based approaches are penalized by limitations of the exploited semantic resources, namely semantic knowledge incompleteness and limited domain coverage. In this paper, we present an automatic semantics-based online recruitment system that reuses knowledge captured in multiple existing semantic resources to match between candidate resumes and job posts. In addition, we use statistical-based concept-relatedness measures to alleviate the problem of semantic knowledge incompleteness in the exploited resources. An experimental instantiation of the proposed system has been installed to validate its effectiveness in matching job applicants to job posts.en_US
dc.publisher12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'15)en_US
dc.titleMatchingSem: online recruitment system based on multiple semantic resourcesen_US
Appears in Collections:Faculty & Staff Scientific Research publications

Files in This Item:
There are no files associated with this item.
Show simple item record

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools