Please use this identifier to cite or link to this item:
Title: Sequential-injection stripping analysis of nifuroxime using DNA-modified glassy carbon electrodes
Authors: nizam diab
ali abuzuhri
wolfgang schuhmann, $Other$Other
Issue Date: 2003
Publisher: Biolectrochemistry
Abstract: The voltammetric behavior of nifuroxime was investigated comparing stationary voltammetric methods with the recently proposed sequential-injection stripping analysis (SISA), by using cyclic voltammetry (CV) and differential-pulse voltammetry at bare and DNA-modified glassy carbon (GC) electrodes. In cyclic voltammetry, reduction of nifuroxime at DNA-modified electrodes gives rise to a well-defined peak, and in contrast to bare GC surfaces, a re-oxidation peak could be observed. Optimization of the pre-concentration process at the DNA-modified surface led to a significant enhancement of the voltammetric current response, a better defined peak shape and an improved dynamic range. Based on this optimized voltammetric procedure, SISA has been evaluated for the determination of nifuroxime. The flow-system significantly facilitates the regeneration of the DNA-modified electrode surface, hence diminishing problems related to accumulation and memory effects. The linear detection range could be extended to 65 microM with a detection limit (3 s) of 0.68 microM, which corresponds to an absolute amount of 21 ng nifuroxime.
Appears in Collections:Faculty & Staff Scientific Research publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools