Please use this identifier to cite or link to this item:
Title: Investigation of the physical properties of the Yb nanosandwiched CdS films
Authors: A. F Qasrawi garni
tamara y.abed
Issue Date: 2018
Publisher: Journal of Alloys and Compounds
Abstract: In this study, the effects of the sandwiching of a 70 nm thick ytterbium film between two layers of CdS on the structural, compositional, optical and electrical properties are investigated. The X-ray diffraction, scanning electron microscopy, energy dispersion X-ray, visible light spectroscopy and impedance spectroscopy techniques are employed to achieve these effects. It was observed that, the nanosandwiching of Yb between two 500 nm thick films of CdS enhances the crystalline nature of the films without altering the lattice parameters. Particularly, the grain size is increased by 25%, the strain, the defect density and the stacking faults are reduced by 31.5%, 43.7% and 25%, respectively. Optically, the Yb nanosandwiching is observed to enhance the visible light absorbability by at least 2.7 times of the whole range and by 8 times at 1.64 eV. The enhancement of the absorbability is associated with shrinking in the band gap and more interband states. In addition, an increase in the real part of the dielectric constant by 54% is observed when Yb was nanosandwiched in the CdS structure. The modeling of the imaginary part allowed exploring the electron-plasmon interaction parameters. A remarkable increase in the drift mobility from 281 to 996 cm2/Vs associated with plasmon frequency enhancement from 0.84 to 1.38 GHz was determined upon Yb nanosandwiching. The effectiveness of this modeling was verified from the impedance spectra in the frequency domain of 0.01–1.80 GHz, which revealed wave trapping property of ideal values of return loss at notch frequency of 1.35 GHz. Furthermore, the electrical resistivity measurements on the studied samples have shown that the presence of Yb reduced the electrical resistivity and shifts the donor level closer to the conduction band of CdS. The studies nominate the nanosandwiched CdS for use in optical and microwave technologies as dual devices.
Appears in Collections:Faculty & Staff Scientific Research publications

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Admin Tools